Answer:
THE MASS OF THE LIQUID IS 22.5 g
Explanation:
Density = 0.180 g/cm3
Side length = 5 cm
Mass = unknown
To calculate the mass of the liquid, we use the formula:
Mass = density * volume
Volume of a cube or cuboid container = l^3
Volume = 5 ^3 = 125 cm3
So therefore, the mass of the liquid is:
Mass = 0.180 * 125
Mass = 22.5 g
In conclusion, the mass of the liquid in the container is 22.5 g
Answer:
A mixture of blue & red light.
Explanation:
During photosynthesis, the oxygen delivered emanates from water particles and if a weighty isotope of oxygen atom was noticed in delivered sub-atomic oxygen, the water atoms were marked with the hefty isotope.
In order to maximize the growth rate of the plant, the required wavelength of light to be used is a mixture of blue & red light. This is on the grounds that as the absorption optima of plant's photoreceptors are at wavelength frequency of red and blue light, subsequently the combination of red and blue light would be ideal for plant growth and development.
The productivity of red (650–665 nm) LEDs on plant development is straightforward on the grounds that these wavelength frequencies entirely fit with the retention pinnacle of chlorophylls and phytochrome, while the enhanced blue light presented the possibility that development under regular light could be mirrored utilizing blue and red LEDs with negligible use of energy.
Answer:
-0.00152 V
Explanation:
Parameters given:
Diameter of the loop = 11 cm = 0.11m
Rate of change of magnetic field, dB/dt = 0.16 T/s
Radius of the loop = 0.055m
The area of the loop will be:
A = pi * r²
A = 3.142 * 0.055²
A = 0.0095 m²
The EMF induced in a loop of wire due to the presence of a changing magnetic field, dB, in a time interval, dt, is given as:
EMF = - N * A * dB/dt
In this case, there's only one loop, so N = 1.
Therefore:
EMF = -1 * 0.0095 * 0.16
EMF = -0.00152 V
The negative sign indicates that the current flowing through the loop acts opposite to the change in the magnetic field.
Answer:
I hope 2 amperes of current passes
Answer:
Here
Explanation:
They don't have free electrons moving around (delocalised electrons) so they can't conduct heat and electricity which gives them a property of good insulators. The insulators stop us having an electric shock because they don't conduct electricity as we use them to insulate metal wires and other metallic things. can i have brainliest now pls!