Answer:
minimum electric power consumption of the fan motor is 0.1437 Btu/s
Explanation:
given data
area = 3 ft by 3 ft
air density = 0.075 lbm/ft³
to find out
minimum electric power consumption of the fan motor
solution
we know that energy balance equation that is express as
E in - E out =
......................1
and at steady state
= 0
so we can say from equation 1
E in = E out
so
minimum power required is
E in = W = m
=
put here value
E in =
E in =
E in = 0.1437 Btu/s
minimum electric power consumption of the fan motor is 0.1437 Btu/s
Answer:
Days: 6.9444 days
Production rate: 547.2035 ft²/s
Explanation:
the solution is attached in the Word file
Answer:
y ≈ 2.5
Explanation:
Given data:
bottom width is 3 m
side slope is 1:2
discharge is 10 m^3/s
slope is 0.004
manning roughness coefficient is 0.015
manning equation is written as

where R is hydraulic radius
S = bed slope



P is perimeter 

![Q = (2+2y) y) \times 1/0.015 [\frac{(3+2y) y}{(3+2\sqrt{5} y)}]^{2/3} 0.004^{1/2}](https://tex.z-dn.net/?f=Q%20%3D%20%282%2B2y%29%20y%29%20%5Ctimes%201%2F0.015%20%5B%5Cfrac%7B%283%2B2y%29%20y%7D%7B%283%2B2%5Csqrt%7B5%7D%20y%29%7D%5D%5E%7B2%2F3%7D%200.004%5E%7B1%2F2%7D)
solving for y![100 =(2+2y) y) \times (1/0.015) [\frac{(3+2y) y}{(3+2\sqrt{5} y)}]^{2/3} \times 0.004^{1/2}](https://tex.z-dn.net/?f=100%20%3D%282%2B2y%29%20y%29%20%5Ctimes%20%281%2F0.015%29%20%5B%5Cfrac%7B%283%2B2y%29%20y%7D%7B%283%2B2%5Csqrt%7B5%7D%20y%29%7D%5D%5E%7B2%2F3%7D%20%5Ctimes%200.004%5E%7B1%2F2%7D)
solving for y value by using iteration method ,we get
y ≈ 2.5
Maximum shear stress in the pole is 0.
<u>Explanation:</u>
Given-
Outer diameter = 127 mm
Outer radius,
= 127/2 = 63.5 mm
Inner diameter = 115 mm
Inner radius,
= 115/2 = 57.5 mm
Force, q = 0
Maximum shear stress, τmax = ?
τmax 
If force, q is 0 then τmax is also equal to 0.
Therefore, maximum shear stress in the pole is 0.
Answer:
a)supplying the intake of an engine with air at a density greater than the density of the surrounding atmosphere
Explanation:
Supercharging is the process of supplying the intake of an engine with air at a density greater than the density of the surrounding atmosphere.
By doing this , it increases the power out put and increases the brake thermal efficiency of the engine.It also increases the volumetric efficiency of the engine.
So the our option a is right.