1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nimfa-mama [501]
2 years ago
13

A hair dryer is basically a duct in which a few layers of electric resistors are placed. A small fan pulls the air in and forces

it to flow over the resistors, where it is heated. Air enters a 1400-W hair dryer at 100 kPa and 22°C and leaves at 47°C. The cross-sectional area of the hair dryer at the exit is 60 cm2. Neglect the power consumed by the fan and the heat losses through the walls of the hair dryer. The gas constant of air is R = 0.287 kPa·m3/kg·K. Also, cp = 1.007 kJ/kg·K for air at room temperature.
determine

(a) the volume flow rate of air at the inlet and

(b) the velocity of the air at the exit.
Engineering
1 answer:
nika2105 [10]2 years ago
6 0

Answer:

a) volume flow rate of air at the inlet is 0.0471 m³/s

b) the velocity of the air at the exit is  8.517 m/s

Explanation:

Given that;

The electrical power Input W_elec = -1400 W = -1.4 kW

Inlet temperature of air T_in = 22°C

Inlet pressure of air p_in = 100 kPa

Exit temperature T_out = 47°C

Exit area of the dyer is A_out = 60 cm²= 0.006 m²

cp = 1.007 kJ/kg·K

R = 0.287 kPa·m3/kg·K

Using mass balance

m_in = m_out = m_air

W _elec = m_air ( h_in - h_out)

we know that h = CpT

so

W _elec = m_air.Cp ( T_in - T_out)

we substitute

-1.4 = m_air.1.007 ( 22 - 47 )

-1.4 =  - m_air.25.175

m_air = -1.4 / - 25.175

m_ air = 0.0556 kg/s

a) volume flow rate of air at the inlet

we know that

m_air = P_in × V_in

now from the ideal gas equation

P_in = p_in / RT_in

we substitute our values

= (100×10³) / ((0.287×10³)(22+273))

= 100000 / 84665

P_in = 1.18 kg/m³

therefore inlet volume flowrate will be;

V_in = m_air / P_in

= 0.0556 / 1.18

= 0.0471 m³/s

the volume flow rate of air at the inlet is 0.0471 m³/s

b) velocity of the air at the exit

the mass flow rate remains unchanged across the duct

m_ air = P_in.A_in.V_in = P_out.A_out.V_out

still from the ideal gas equation

P_out = p_out/ RT_out   ( assume p_in = p_out)

P_out = (100×10³) / ((0.287×10³)(47+273))

P_out  = 1.088 kg/m³

so the exit velocity will be;

V_out = m_air / P_out.A_out

we substitute our values

V_out = 0.0556 / ( 1.088 × 0.006)

= 0.0556 / 0.006528

= 8.517 m/s

 Therefore the velocity of the air at the exit is  8.517 m/s

You might be interested in
Should aircraft wings have infinite stiffness?
Colt1911 [192]

Answer:

No, they need to be somewhat flexible so that forces such as turbulance don't shear the wing off.

3 0
2 years ago
Read 2 more answers
What is the measurement of this dial caliper? <br> A. 5.491<br> B. 4.044<br> C. 5.691
just olya [345]
Its C .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... ..........
4 0
3 years ago
What are the different types of documents used to communicate engineering designs?
Ipatiy [6.2K]

Answer:

COMMON ENGINEERING DOCUMENTS

Inspection or trip reports.

Research, laboratory, and field reports.

Specifications.

Proposals.

Progress reports.

ect...

Explanation:

7 0
3 years ago
Steep safety ramps are built beside mountain highway to enable vehichles with fedective brakes to stop safely. a truck enters a
Veronika [31]

Answer:

a. 6 seconds

b. 180 feet

Explanation:

Images attached to show working.

a. You have the position of the truck so you integrate twice. Use the formula and plug in the time t = 7 sec. Check out uniform acceleration. The time at which the truck's velocity is zero  is when it stops.

b. Determine the initial speed. Plug in the time calculated in the previous step. From this we can observe that the truck comes to a stop before the end of the ramp.

7 0
3 years ago
What is the significance of Saint Venant's principle?
nexus9112 [7]

Answer:

While calculating the stresses in a body since we we assume a constant distribution of stress across a cross section if the body is loaded along the centroid of the cross section , this assumption of uniformity is assumed only on the basis of Saint Venant's Principle.

Saint venant principle states that the non uniformity in the stress at the point of application of load is only significant at small distances below the load and depths greater than the width of the loaded material this non uniformity is negligible and hence a uniform stress distribution is a reasonable and correct assumption while solving the body for stresses thus greatly simplifying the analysis.

7 0
2 years ago
Other questions:
  • The 15-kg block A slides on the surface for which µk = 0.3. The block has a velocity v = 10 m/s when it is s = 4 m from the 10-k
    7·1 answer
  • D
    13·1 answer
  • Design a circuit with output f and inputs x1, x0, y1, and y0. Let X = x1x0 and Y = y1y0 represent two 2-digit binary numbers. Th
    10·1 answer
  • Three tool materials (high-speed steel, cemented carbide, and ceramic) are to be compared for the same turning operation on a ba
    10·1 answer
  • You are traveling upstream on a river at dusk. You see a buoy with the number 5 and a flashing green light . What should you do?
    8·1 answer
  • A Geostationary satellite has an 8kW RF transmission pointed at the earth. How much force does that induce on the spacecraft? (N
    15·1 answer
  • Tests reveal that a normal driver takes about 0.75 s before he orshecan react to a situation to avoid a collision. It takes abou
    11·1 answer
  • Who's your favorite singer and WHT your favorite song​
    11·2 answers
  • Using the following data, determine the percentage retained, cumulative percentage retained, and percent passing for each sieve.
    6·1 answer
  • 9. An automobile's oxygen sensor output needs
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!