Explanation:
q = mCΔt
q = (2.3 kg) (385 J/kg/K) (80.0°C − 20.0°C)
q ≈ 53,000 J
q ≈ 53 kJ
Answer:
ΔD = 2.29 10⁻⁵ m
Explanation:
This is a problem of thermal expansion, if the temperature changes are not very large we can use the relation
ΔA = 2α A ΔT
the area is
A = π r² = π D² / 4
we substitute
ΔA = 2α π D² ΔT/4
as they do not indicate the initial temperature, we assume that ΔT = 75ºC
α = 1.7 10⁻⁵ ºC⁻¹
we calculate
ΔA = 2 1.7 10⁻⁵ pi (1.8 10⁻²) ² 75/4
ΔA = 6.49 10⁻⁷ m²
by definition
ΔA = A_f- A₀
A_f = ΔA + A₀
A_f = 6.49 10⁻⁷ + π (1.8 10⁻²)² / 4
A_f = 6.49 10⁻⁷ + 2.544 10⁻⁴
A_f = 2,551 10⁻⁴ m²
the area is
A_f = π D_f² / 4
A_f =
D_f =
D_f = 1.80229 10⁻² m
the change in diameter is
ΔD = D_f - D₀
ΔD = (1.80229 - 1.8) 10⁻² m
ΔD = 0.00229 10⁻² m
ΔD = 2.29 10⁻⁵ m
Answer:
b) one-third as great.
Explanation:
As we know that same heat is supplied in this experiment
so we will have

now we know that both are initially at same temperature
then their final temperatures are


now we have

so we have

so heat capacity of mystery metal is 1/3 times that of water
Answer:
These regions are known as compressions and rarefactions respectively. The compressions are regions of high air pressure while the rarefactions are regions of low air pressure.
Explanation:
Answer:
It doesn't allow plants and crops to grow also some animals take them to be food so they die which wipes out the population of animals and plants