Answer:

Explanation:
For pressure gage we can determine this by saying:
The closed tank with oil and air has a pressure of P₁ and the pressure of oil at a certain height in the U-tube on mercury is p₁gh₁. The pressure of mercury on the air in pressure gauge is p₂gh₂. The pressure of the gage is P₂.

We want to work out P₁-P₂: Heights aren't given so we can solve it in terms of height: assuming h₁=h₂=h

Answer:
1. They needed to develop multiple components in software programs.
2. The ability to overlap the development to be more evolutionary in nature.
3. The need to be more risk-averse or the unwillingness to take risks led to the use of a spiral model.
Explanation:
Software development life cycle (SDLC) can be defined as a strategic process or methodology that defines the key steps or stages for creating and implementing high quality software applications.
In SDLC, a waterfall model can be defined as a process which involves sequentially breaking the software development into linear phases. Thus, the development phase takes a downward flow like a waterfall and as such each phase must be completed before starting another without any overlap in the process.
An incremental model refers to the process in which the requirements or criteria of the software development is divided into many standalone modules until the program is completed.
Also, a spiral model can be defined as an evolutionary SDLC that is risk-driven in nature and typically comprises of both an iterative and a waterfall model. Spiral model of SDLC consist of these phases; planning, risk analysis, engineering and evaluation.
<em>What motivated software engineers to move from the waterfall model to the incremental or spiral model is actually due to the following fact;</em>
- They needed to develop multiple components in software programs.
- The ability to overlap the development to be more evolutionary in nature.
- The need to be more risk-averse or the unwillingness to take risks led to the use of a spiral model.
Answer:
The correct answer is option 'c':Convection.
Explanation:
When we ignite a campfire the heat produced by combustion heats the air above the fire. As we know that if a gases gains heat it expands thus it's density decreases and hence it rises, if we hold our hands directly above the fire this rising hot air comes in contact with our hands thus warming them.
The situation is different if we are at some distance from the campfire laterally. Since the rising air cannot move laterally the only means the heat of the fire reaches our body is radiation.
But in the given situation the correct answer is convection.