Answer:
The Poisson's Ratio of the bar is 0.247
Explanation:
The Poisson's ratio is got by using the formula
Lateral strain / longitudinal strain
Lateral strain = elongation / original width (since we are given the change in width as a result of compession)
Lateral strain = 0.15mm / 40 mm =0.00375
Please note that strain is a dimensionless quantity, hence it has no unit.
The Longitudinal strain is the ratio of the elongation to the original length in the longitudinal direction.
Longitudinal strain = 4.1 mm / 270 mm = 0.015185
Hence, the Poisson's ratio of the bar is 0.00375/0.015185 = 0.247
The Poisson's Ratio of the bar is 0.247
Please note also that this quantity also does not have a dimension
Explanation:
Look at the drawings and decide which view is missing. Front? Side? Top? Then draw it
Answer:
try settings and go to updates?
Explanation:
Explanation:
Ohm's law is used here. V = IR, and variations. The voltage across all elements is the same in this parallel circuit. (V1 =V2 =V3)
The total supply current is the sum of the currents in each of the branches. (It = I1 +I2 +I3)
Rt = (8 V)/(8 A) = 1 Ω . . . . supply voltage divided by supply current
I3 = 8A -3A -4A = 1 A . . . . supply current not flowing through other branches
R1 = (8 V)/(3 A) = 8/3 Ω
R2 = (8 V)/(4 A) = 2 Ω
R3 = (8 V)/(I3) = (8 V)/(1 A) = 8 Ω
V1 = V2 = V3 = 8 V
Given:
Assuming the transition to turbulence for flow over a flat plate happens at a Reynolds number of 5x105, determine the following for air at 300 K and engine oil at 380 K. Assume the free stream velocity is 3 m/s.
To Find:
a. The distance from the leading edge at which the transition will occur.
b. Expressions for the momentum and thermal boundary layer thicknesses as a function of x for a laminar boundary layer
c. Which fluid has a higher heat transfer
Calculation:
The transition from the lamina to turbulent begins when the critical Reynolds
number reaches 


