Answer:
Thomson placed two magnets on either side of the tube, and observed that this magnetic field also deflected the cathode ray. The results of these experiments helped Thomson determine the mass-to-charge ratio of the cathode ray particles, which led to a fascinating discovery, minus the mass of each particle was much, much smaller than that of any known atom. Thomson repeated his experiments using different metals as electrode materials, and found that the properties of the cathode ray remained constant no matter what cathode material they originated from. From this evidence, Thomson made the following conclusions:
The cathode ray is composed of negatively-charged particles.
The particles must exist as part of the atom, since the mass of each particle is only ~1/2000 the mass of a hydrogen atom.
These subatomic particles can be found within atoms of all elements.
While controversial at first, Thomson's discoveries were gradually accepted by scientists. Eventually, his cathode ray particles were given a more familiar name: electrons. The discovery of the electron disproved the part of Dalton's atomic theory that assumed atoms were indivisible. In order to account for the existence of the electrons, an entirely new atomic model was needed.
Explanation:
All compounds are molecules because a molecule is 2 or more substances/elements combined and a compound is 2 or more elements combined. But not all molecules are elements because some molecules are just combined substances with no elements combined at all.
Answer:
(A) endothermic
(A) Yes, absorbed
Explanation:
Let's consider the following thermochemical equation.
2 Fe₂O₃(s) ⇒ 4 FeO(s) + O₂(g) ΔH = 560 kJ
Since ΔH > 0, the reaction is endothermic.
We can establish the following relations:
- 560 kJ are absorbed when 2 moles of Fe₂O₃ react.
- The molar mass of Fe₂O₃ is 160 g/mol.
Suppose 66.6 g of Fe₂O₃ react. The heat absorbed is:
