Ionic compound is formed by negative and positive ions, these ions form ionic bond
Answer:
0.24 g
Explanation:
Given that:
The average number of the calories for the carbohydrates = 4.1 calorie / g
Also,
6 - oz serving of the diet soda contains less than 1 calorie per can
So,
Maximum mass of carbohydrate = Maximum calorie / Average number of the calories for the carbohydrates
The maximum of the calorie can be 1 calorie per can
So,
<u>Maximum mass of carbohydrate = 1 calorie / 4.1 calorie / g = 0.24 g</u>
Explanation:
sodium atom is neutral while sodium ion is a charged specie with a charge of +1
A because the end result of this reaction is a radical created by the oxidation of an aromatic amine's or phenol's ring substituent. The hydroxyl group of a phenol acts as the ring substituent in this situation.
<h3>Which two enzyme types are required for the two-step process of converting cytosine to 5 hmC?</h3>
- The methyl group is transferred to cytosine in the first stage, and it is then hydroxylated in the second step.
- Therefore, a transferase and an oxidoreductase are the two groups of enzymes required.
<h3>Which kind of interaction between proteins and the dextran column material is most likely to take place?</h3>
- Hydrogen bonding because the glucose's OH would form an H-bond with any exposed polar side chains on a protein surface.
<h3>Two out of the four proteins would adhere to a cation-exchange column at what buffer pH? </h3>
- Only positively charged proteins can bind to a cation-exchange column, and this can only happen when the pH is lower than the pI.
- Proteins A and B would both be positively charged at pH 7.0.
To learn more about hydroxyquinoline visit:
brainly.com/question/26102339
#SPJ4
Answer:
Equilibrium concentration of
is 12.5 M
Explanation:
Given reaction: 
Here, ![K_{c}=\frac{[C_{2}H_{5}OH]}{[C_{2}H_{4}][H_{2}O]}](https://tex.z-dn.net/?f=K_%7Bc%7D%3D%5Cfrac%7B%5BC_%7B2%7DH_%7B5%7DOH%5D%7D%7B%5BC_%7B2%7DH_%7B4%7D%5D%5BH_%7B2%7DO%5D%7D)
where
represents equilibrium constant in terms of concentration and species inside third bracket represent equilibrium concentrations
Here,
,
and 
So, ![[H_{2}O]=\frac{[C_{2}H_{5}OH]}{[C_{2}H_{4}]\times K_{c}}=\frac{1.69}{0.015\times 9.0}=12.5M](https://tex.z-dn.net/?f=%5BH_%7B2%7DO%5D%3D%5Cfrac%7B%5BC_%7B2%7DH_%7B5%7DOH%5D%7D%7B%5BC_%7B2%7DH_%7B4%7D%5D%5Ctimes%20K_%7Bc%7D%7D%3D%5Cfrac%7B1.69%7D%7B0.015%5Ctimes%209.0%7D%3D12.5M)
Hence equilibrium concentration of
is 12.5 M