Methanol is not an example of a fossil fuel.
AB+XY->AY+XB
We know that the answer would be KCl because of the switching that takes place during a double displacement reaction. Just like Zn and MnO4 switched and combined, the remaining elements, K and Cl, will combine.
We know that the answer is simply KCl because both K and Cl have an ion of only +/-1, meaning when they cross, no suffixes are made, since their ions are only 1.
For example, if you combined Mg with Cl, you would get MgCl2, because Mg has an ion of +2.
I hope this helps!
Combustion reaction for menthol is as follows;
CxHyOz + O₂ ---> xCO₂ + H₂O
Mass of CO₂ formed - 28.16 mg
Therefore number of moles formed - 28.16/ 44 g/mol = 0.64 mmol
Mass of water formed - 11.53 mg
number of water moles formed - 11.53 mg/18 g/mol = 0.64 mmol
From CO₂,
1 mol of CO₂ - 1 mol of C and 2 mol of O
therefore number of C moles - 0.64 mmol
O moles - 1.28 mmol
from H₂O
1 mol of H₂O - 2 mol of H and 1 mol of O
number of H moles - 1.28 mmol
O moles - 0.64 mmol
Mass of menthol initially - 10 mg
in reactions, the masses of products are equal to the masses of reactants. The excess mass to the products formed is due to O₂ in air
Original mass of menthol - 10 mg
mass of water and CO₂ - 11.53 mg + 28.16 mg = 39.69
Difference in mass - 39.69 - 10 = 29.69 mg
This difference comes from O moles in air - 29.69 mg/ 16 g/mol = 1.8556 mmol
then O moles coming from menthol - (1.28 + 0.64) - 1.8556 = 0.064 mmol
In menthol
C moles - 0.64 mmol
H moles - 1.28 mmol
O moles - 0.064 mmol
ratios of C:H:O
C H O
0.64 1.28 0.064
x1000 x1000 x1000 to get whole numbers
640 1280 64
10 20 1
Simplest ratio of C:H:O is 10:20:1
therefore empirical formula of menthol is C₁₀H₂₀O
Answer:
we will except an increase in the polarity of the system and this will cause the Non-polar spot to be near the solvent front, while the polar spot will run at an approximate speed of 0.5 Rf
Explanation:
when we run a TLC plate in a 50/50 mixture of hexanes and ethyl acetate we will except an increase in the polarity of the system and this will cause the Non-polar spot to be near the solvent front, while the polar spot will run at an approximate speed of 0.5 Rf
The speed of the polar spot depends largely on the level of polarity, an increase in the polarity will see both spots of Neat hexane run when we run a TLC plate in a 50/50 mixture of hexanes and ethyl acetate