1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
inn [45]
3 years ago
9

I need help with all of these questions

Physics
1 answer:
Sedbober [7]3 years ago
7 0

Answer:

This was my best estimation of the answers

You might be interested in
Use the diagram below modeling a football kicked from a horizontal surface B
djyliett [7]
B is the correct one
5 0
2 years ago
Read 2 more answers
Land heats up and cools down quickly because...
chubhunter [2.5K]
I would say it reflects the sun easily. That’s also how we see it :)
6 0
3 years ago
A 5 kgkg sphere having a charge of ++ 8 μCμC is placed on a scale, which measures its weight in newtons. A second sphere having
Mrac [35]

Answer:

 F_Balance = 46.6 N    ,m' = 4,755 kg

Explanation:

In this exercise, when the sphere is placed on the balance, it indicates the weight of the sphere, when another sphere of opposite charge is placed, they are attracted so that the balance reading decreases, resulting in

          ∑ F = 0

          Fe –W + F_Balance = 0

         F_Balance = - Fe + W

           

The electric force is given by Coulomb's law

          Fe = k q₁ q₂ / r₂

The weight is

          W = mg

Let's replace

           F_Balance = mg - k q₁q₂ / r₂

Let's reduce the magnitudes to the SI system

          q₁ = + 8 μC = +8 10⁻⁶ C

          q₂ = - 3 μC = - 3 10⁻⁶ C

          r = 0.3 m = 0.3 m

Let's calculate

         F_Balance = 5 9.8 - 8.99 10⁹  8 10⁻⁶ 3 10⁻⁶ / (0.3)²

         F_Balance = 49 - 2,397

         F_Balance = 46.6 N

This is the balance reading, if it is calibrated in kg, it must be divided by the value of the gravity acceleration.

Mass reading is

          m' = F_Balance / g

          m' = 46.6 /9.8

          m' = 4,755 kg

6 0
3 years ago
When a person falls from certain height on cemented floor, he receives more injuries why​
monitta

Explanation:

When a man falls on a hard cemented floor his momentum reduced to zero in a very short time and hurt the man. Whereas when a man falls on a heap of sand. As sand can compress, it takes longer time for the man to hit the ground (or hard surface)

8 0
2 years ago
4. A 62.0-kg person, standing on the diving board, dives straight down into the water. Just before striking the water, her speed
Alekssandra [29.7K]

To solve this problem it is necessary to apply the concepts related to the Moment. The moment in terms of the Force and the time can be expressed as

\Delta P = F\Delta t

F = Force

\Delta t = Time

At the same time the moment can be expressed in terms of mass and velocity, mathematically it can be given as

P = m \Delta v

Where

m = Mass

\Delta v = Change in velocity

Our values are given as

\Delta t=1.65s

By equating the two equations we can find the Force,

F\Delta t = m\Delta v

F = \frac{m\Delta v}{\Delta t}

F = \frac{62(1.1-5.5)}{1.65}

Therefore, the net average force will be:

F = - 165N

The negative symbol indicates that the direction of the force is upwards.

7 0
3 years ago
Other questions:
  • Stars and planets form when dust and gas from space is pulled together by.. what?
    10·1 answer
  • Please help have no clue on this
    11·1 answer
  • A 65.0 kg ice skater standing on frictionless ice throws a 0.15 kg snowball horizontally at a speed of 32.0 m/s. What is the vel
    11·1 answer
  • 3
    9·1 answer
  • Two solenoids of equal length are each made of 2000 turns of copper wire per meter. Solenoid I has a 5.00 cm radius; solenoid II
    5·1 answer
  • Need help with a physics question.
    11·1 answer
  • Why thermos flask used​
    15·1 answer
  • Is the intensity of light directly or inversely proportional to the concentration according to Beer-lambert's law?
    12·1 answer
  • An 800 kHz radio signal is detected at a point 3.2 km distant from a transmitter tower. The electric field amplitude of the sign
    11·1 answer
  • Help on 9 and 10!!!!!! I’ll give 5 starts
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!