Answer:
an electromagnetic wave with a wavelength in the range 0.001–0.3 m, shorter than that of a normal radio wave but longer than those of infrared radiation. Microwaves are used in radar, in communications, and for heating in microwave ovens and in various industrial processes.
Answer:
4.14°
Explanation:
given:
r = 1.2 km
v = 105 km/h
1) <em>convert your given </em>
a) r = 1.2 km to m = 1200m
b) v = 105 km/h to m/s = 29.2 m/s
2) <em>plug into your ideal banking angle equation</em>
(
) =
= 4.14°
Neap tide = tide where there is the least difference between high and low water levels
Spring tide = tide where there is the greatest difference between high and low water levels
Equator = an imaginary line drawn around earth dividing it into northern and southern hemispheres
Seasons = the divisions of the year marked by specific weather patterns and daylight hours.
Hope this helps!
Answer:
The crust is the first layer of the earth. It is split up into two parts the continental crust, and the oceanic crust. The oceanic crust takes up 71% of the earths crust, and the other 29% of the crust is continental. The continental is made up of igneous rocks, and the oceanic crust is made up of sedimentary and basalt rocks. The continental crust is older than the oceanic crust, some of the rocks are 3.9 billion years old. The density average of the oceanic crust is 3g/cm. The average density of the continental earth is 2.7g/cm. The temperature of the crust is around 200-400 degrees Celsius. The crust is about 60 km thick under a continent and 5 km thick under the ocean. The crust is constantly moving. The crust doesn't even make up 1% of the earth! The crust is the layer were tectonic plates can be found.
Explanation:
Answer: elastic potential energy = 20.27 J
Explanation:
Given that the
Mass M = 0.470 kg
Height h = 4.40 m
Spring constant K = 85 N/m
The maximum elastic potential will be equal to the maximum kinetic energy experienced by the block.
But according to conservative of energy, the maximum kinetic energy is equal to the maximum potential energy experienced by the block of mass M.
That is
K .E = P.E = mgh
Where g = 9.8m/s^2
Substitutes all the parameters into the formula
K.E = 0.470 × 9.8 × 4.4
K.E = 20.27 J
Where K.E = maximum elastic potential energy stored in the spring during the motion of the blocks after the collision which is 20.27J.