Answer:
The first 50 elements along with their valences are given below :
1. Hydrogen = 1
2. Helium = 0
3. Lithium = 1
4. Beryllium = 2
5. Boron = 3
6. Carbon = 4
7. Nitrogen = 3
8. Oxygen = 2
9. Fluorine = 1
10. Neon = 0
11. Sodium = 1
12. Magnesium = 2
13. Aluminium = 3
14. Silicon = 4
15. Phosphorus = 3
16. Sulphur = 2
17. Chlorine = 1
18. Argon = 0
19. Potassium = 1
20. Calcium = 2
21. Scandiun = 3
22. Titanium = 3
23. Vanadium = 4
24. Chromium = 3
25. Manganese = 4
26. Iron = 2
27. Cobalt = 2
28. Nickel = 2
29. Copper = 2
30. Zinc = 2
31. Gallium = 3
32. Germanium = 4
33. Arsenic = 3
34. Selenium = 2
35. Bromine = 1
36. Krypton = 0
37. Rubidium = 1
38. Strontium = 2
39. Yttrium = 3
40. Zirconium = 4
41. Niobium = 3
42. Molybdenum = 3
43. Technetium = 7
44. Ruthenium = 4
45. Rhodium = 3
46. Palladium = 4
47. Sliver = 1
48. Cadmium = 2
49. Indium = 3
50. Tin = 4
<u>Note</u> :
An element like Iron, copper can have more than one valencies.
The enthalpy change of the reaction when sodium hydroxide and sulfuric acid react can be calculated using the mass of solution, temperature change, and specific heat of water.
The balanced chemical equation for the reaction can be represented as,

Given volume of the solution = 101.2 mL + 50.6 mL = 151.8 mL
Heat of the reaction, q =
Δ
m is mass of the solution = 151.8 mL * 
C is the specific heat of solution = 4.18 
ΔT is the temperature change = 
q = 
Moles of NaOH =
NaOH
Moles of
= 
Enthalpy of the reaction = 
The continent rest on massive slabs of rocks called tectonics
Carbon oxides (monoxide, dioxide) are gases :)
194.5 g of BCl₃ is present in 1 × 10²⁴ molecules of BCl₃.
Explanation:
In order to convert the given number of molecules of BCl₃ to grams, first we have to convert the molecules to moles.
It is known that 1 moles of any element has 6.022×10²³ molecules.
Then 1 molecule will have
moles.
So 
Thus, 1.66 moles are included in BCl₃.
Then in order to convert it from moles to grams, we have to multiply it with the molecular mass of the compound.
As it is known as 1 mole contains molecular mass of the compound.
As the molecular mass of BCl₃ will be

Mass of boron is 10.811 g and the mass of chlorine is 35.453 g.
Molar mass of BCl₃ = 10.811+(3×35.453)=117.17 g.


So, 194.5 g of BCl₃ is present in 1 × 10²⁴ molecules of BCl₃.