Answer:
an increase in 1-butene was observed when t-butoxide was used
Explanation:
When a base reacts with an alkyl halide, an elimination product is formed. This reaction is an E2 reaction.
Here we are to compare the reaction of two different bases with one substrate; 2-bromobutane. Both reactions occur by the E2 mechanism but follow different transition states due to the size of the base.
The Saytzeff product, 2-butene, is obtained when the methoxide is used while the non Saytzeff product, 1-butene, is obtained when t-butoxide is used.
The Saytzeff rule is reliable in predicting the major products of simple elimination reactions of alkyl halides given the fact that a small/strong bases is used for the elimination reaction. Therefore hydroxide, methoxide and ethoxide bases give similar results for the same alkyl halide substrate. Bulky bases such as tert-butoxide tend to yield a higher percentage of the non Saytzeff product and this is usually attributed to steric hindrance.
Answer:
44.8 L
Explanation:
Using the ideal gas law equation:
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (K)
At Standard temperature and pressure (STP);
P = 1 atm
T = 273K
Hence, when n = 2moles, the volume of the gas is:
Using PV = nRT
1 × V = 2 × 0.0821 × 273
V = 44.83
V = 44.8 L
Elements are listed in order of increasing atomic number from the left to the right.
Answer:
molality of sodium ions is 1.473 m
Explanation:
Molarity is moles of solute per litre of solution
Molality is moles of solute per kg of solvent.
The volume of solution = 1 L
The mass of solution = volume X density = 1000mL X 1.43 = 1430 grams
The mass of solute = moles X molar mass of sodium phosphate = 0.65X164
mass of solute = 106.6 grams
the mass of solvent = 1430 - 106.6 = 1323.4 grams = 1.3234 Kg
the molality = 
Thus molality of sodium phosphate is 0.491 m
Each sodium phosphate of molecule will give three sodium ions.
Thus molality of sodium ions = 3 X 0.491 = 1.473 m
Answer: The correct answer is "B" two bonding domains(or bonding pairs) or two non bonding domains(or lone pairs)
Explanation:
Molecular geometry/structure is a three dimensional shape of a molecule. It is basically an arrangement of atoms in a molecule.It is determined by the central atom, its surrounding atoms and electron pairs.According to VSEPR theory, there are 5 basic shapes of a molecule: linear, trigonal planar, tetrahedral, trigonal bipyramidal and octahedral.
A)Four bonding domains and zero non bonding domains: shape is tetrahedral and bond angle is 109.5°
B)Two bonding domains and two non bonding domains(lone pairs): shape is bent and bond angle is 104.5°
C)Three bonding domains and one non bonding domain: shape is trigonal pyramidal and bond angle is 107°
D)Two bonding domain and zero non bonding domain: shape is linear and bond angle is 107°
E)Two bonding domain and one non bonding domain: bent shape and bond angle is 120°
F)Three bonding domains and zero nonbonding domain: shape is trigonal planar and bond angle is 120°
Hence Two bonding domains and two non bonding domains have the smallest bond angle.