Exothermic reaction normally gives out heat for completing the reaction. the burning of a candle or the condensation of water vapour to water are all exothermic reactions. The prefix "ex" at the begining refers to external or outside and normally these kind of reactions release heat at the end.During neutralization, when the acida and bases are combined, it releases heat and this kind of reaction is definitely exothermic reaction.The combustion of any kind of fuel is also exothermic reaction as it gives out heat at the end.Fossil fuel burnt in cars and engines are good examples.
Answer:
<em>Three (3) of the molecules are polar: </em>
<em> </em>
<em> </em>
<em>.</em>
Explanation:
Polar substances have their elements held together by a covalent bond that contain partially positive and negative charges, which results in a difference in the charges' electronegativity difference (usually ranging between 0.4 and 0.7).
- PCl5 is <u>non-polar</u> with a symmetric geometry
- CoS is <u>polar</u>
- XeO3 is <u>polar</u>, with a trigonal pyramidal molecular geometric
- SeBr2 is <u>polar</u> as the difference their electronegativity is about ).5
<>"Atomic particles. Protons and neutrons are heavier than electrons and reside in the nucleus at the center of the atom. Electrons are extremely lightweight and exist in a cloud orbiting the nucleus. The electron cloud has a radius 10,000 times greater than the nucleus."<>
protons and electrons are both always the atomic number which is 9 in this case.
For neutrons you subtract the atomic number (9) from the weight of the atom (18.998) some teachers will want you to round to the nearest whole (19). We do this because the number of protons is the atomic number so if you subtract the protons from the whole weight of the atom you would have the electrons and neutrons left. Since electrons weigh so little we don't have to subtract them. Weighing neutrons and electrons would be like weighing an elephant (neutrons) and then putting one marshmallow on the scale (electron).
Answer:
Moles of NO₂ = 0.158
Explanation:
SO 2 ( g ) + NO 2 ( g ) ⇄ SO 3 ( g ) + NO ( g )
According to the law of mass equation
= ![\frac{[SO_{3} ][NO]}{[SO_{2}][NO_{2} ]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BSO_%7B3%7D%20%5D%5BNO%5D%7D%7B%5BSO_%7B2%7D%5D%5BNO_%7B2%7D%20%20%5D%7D)
⇒ 3.10 =
At equilibrium [SO₃] = [NO]
⇒ [NO₂] = 
⇒ [NO₂] = 0.158
So. number of moles of NO₂ at equilibrium added = 0.158