Answer:
B
Explanation:
The whole thing is talking about the damage runoffs have done that is equal to answer B.
Answer:
23. 4375 m
Explanation:
There are two parts of the rocket's motion
1 ) accelerating (assume it goes upto h1 height )
using motion equations upwards

Lets find the velocity after 2.5 seconds (V1)
V = U +at
V1 = 0 +5*2.5 = 12.5 m/s
2) motion under gravity (assume it goes upto h2 height )
now there no acceleration from the rocket. it is now subjected to the gravity
using motion equations upwards (assuming g= 10m/s² downwards)
V²= U² +2as
0 = 12.5²+2*(-10)*h2
h2 = 7.8125 m
maximum height = h1 + h2
= 15.625 + 7.8125
= 23. 4375 m
Answer:
A model rocket is launched with an initial upward velocity of 215 ft/s.
Explanation:
Answer:

Explanation:
Given data

To find
Mutual inductance of the two-coil system
Solution
The mutual inductance given as:
M= (-VΔt)/ΔI
Substitute the given values
So

Answer:

Explanation:
Given,
Width of rectangular tank, b = 1 m
Length of the tank, l = 2 m
height of the tank, d = 1.5 m
Depth of gasoline on the tank, h = 1 m


The differential form with the acceleration


acceleration in z-direction = 0 m/s²
g = 9.8 m/s²
a_y is the horizontal acceleration of the gasoline.



Hence, Horizontal acceleration of the gasoline before gasoline would spill is equal to 4.9 m/s²