1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tino4ka555 [31]
3 years ago
5

Question 1 (1 point)

Physics
1 answer:
Juli2301 [7.4K]3 years ago
3 0

Hello!

\large\boxed{800Ns}

Remember that impulse is equivalent to:

Impulse = force (N) × time (s)

Plug in the given force and time:

Impulse = 25 × 32

Impulse = 800 Ns

You might be interested in
a swimmer can swim in still water at a speed of 9.50 m/s. he intends to swim directly across the river that has a downstream cur
Doss [256]
Refer to the diagram shown below.

Still-water speed  = 9.5 m/s
River speed = 3.75 m/s down stream.

The velocity of the swimmer relative to the bank is the vector sum of his still-water speed and the speed of the river.

The velocity relative to the bank is
V = √(9.5² + 3.75²) = 10.21 m/s

The downstream angle is
θ = tan⁻¹ 3.75/9.5 = 21.5°

Answer:  10.2 m/s at 21.5° downstream.

7 0
3 years ago
Read 2 more answers
A train travels 92 miles in 11 1/2 hours. what is its average speed in miles per hour?
Gnom [1K]
The answer is 8 mph.
5 0
3 years ago
With your hand parallel to the floor and your palm upright, you lower a 3-kg book downward. If the force exerted on the book by
lara31 [8.8K]

According to the net force, the acceleration of the book is 16.47 m/s².

We need to know about force to solve this problem. According to second Newton's Law, the force applied to an object will be proportional to mass and acceleration. Hence, it can be written as

∑F = m . a

where F is force, m is mass and a is acceleration

From the question above, we know that

m = 3 kg

g = 9.8 m/s²

F1 = 20 N

Find the net force

∑F = F1 + W

∑F = 20 + m . g

∑F = 20 + 3 . 9.8

∑F = 20 + 29.4

∑F = 49.4 N

Find the acceleration

∑F = m . a

49.4 = 3 . a

a = 16.47 m/s²

Find more on force at: brainly.com/question/25239010

#SPJ4

7 0
1 year ago
A gymnast of mass 63.0 kg hangs from a vertical rope attached to the ceiling. You can ignore the weight of the rope and assume t
Sergio [31]

Answer:

Explanation:

A ) When gymnast is motionless , he is in equilibrium

T = mg

= 63 x 9.81

= 618.03 N

B )

When gymnast climbs up at a constant rate , he is still in equilibrium ie net force acting on it is zero as acceleration is zero.

T = mg

= 618.03 N

C ) If the gymnast climbs up the rope with an upward acceleration of magnitude 0.600 m/s2

Net force on it = T - mg   , acting in upward direction

T - mg = m a

T =  mg + m a

= m ( g + a )

= 63 ( 9.81 + .6)

= 655.83 N

D )  If the gymnast slides down the rope with a downward acceleration of magnitude 0.600 m/s2

Net force acting in downward direction

mg - T = ma

T = m ( g - a )

= 63 x ( 9.81 - .6 )

= 580.23 N

6 0
3 years ago
A) 1.2-kg ball is hanging from the end of a rope. The rope hangs at an angle 20° from the vertical when a 19 m/s horizontal wind
Marat540 [252]

Answer:

Part a)

F_v = 4.28 N

Part B)

L = 1.02 m

Part C)

v = 1.25 m/s

Explanation:

Part A)

As we know that ball is hanging from the top and its angle with the vertical is 20 degree

so we will have

Tcos\theta = mg

T sin\theta = F_v

\frac{F_v}{mg} = tan\theta

F_v = mg tan\theta

F_v = 1.2\times 9.81 (tan20)

F_v = 4.28 N

Part B)

Here we can use energy theorem to find the distance that it will move

-\mu mg cos\theta L + mg sin\theta L = -\frac{1}{2}mv^2

(-(0.37)m(9.81) cos15 + m(9.81) sin15)L = - \frac{1}{2}m(1.4)^2

(-3.5 + 2.54)L = - 0.98

L = 1.02 m

Part C)

At terminal speed condition we know that

F_v = mg

bv^2 = mg

2.5 v^2 = 3.9

v = 1.25 m/s

7 0
3 years ago
Other questions:
  • What is the speed of the roller coaster at the top of the loop if the radius of curvature there is 11.0 m and the downward accel
    5·1 answer
  • A sinusoidal electromagnetic wave is propagating in a vacuum in the +z-direction. If at a particular instant and at a certain po
    15·1 answer
  • During a 72-ms interval, a change in the current in a primary coil occurs. This change leads to the appearance of a 6.0-mA curre
    5·1 answer
  • Which of the following decreases the dissolving rate of a solid in water?
    14·1 answer
  • A 0.20 mass on a horizontal spring is pulled back a certain distance and released. The maximum speed of the mass is measured to
    9·1 answer
  • Can anyone please help me​
    13·1 answer
  • Please please please please can someone please help me with this. thank you ​
    15·1 answer
  • A beaker of boiling water stops boiling and eventually reaches room
    14·2 answers
  • The gravitation force between two masses (36n if the distance between masses is tripled, the force of gravity will be).
    13·1 answer
  • Location C is 0.02 m from a small sphere which has a charge of 3 nanocoulombs uniformly distributed on its surface. Location D i
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!