1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vova2212 [387]
3 years ago
14

A child kicks a ball horizontally with a speed of 2.8 m/s from the end of a deck that is 8.5 m high.

Physics
1 answer:
Bond [772]3 years ago
7 0

Answer:

Explanation:

time =d/s

therefore, t =8.5/2.8

t=3.02s

You might be interested in
You are driving at the speed of 27.7 m/s (61.9764 mph) when suddenly the car in front of you (previously traveling at the same s
densk [106]

Here when car in front of us applied brakes then it is slowing down due to frictional force on it

So here we can say that friction force on the car front of our car is given as

F_f = \mu m g

So the acceleration of car due to friction is given as

F_{net} = - \mu mg

a = \frac{F_{net}}{m}

a = -\mu g

now it is given that

\mu = 0.868

g = 9.81 m/s^2

so here we have

a = -0.868 * 9.81

a = -8.52 m/s^2

so the car will accelerate due to brakes by a = - 8.52 m/s^2

4 0
4 years ago
A car is moving at 25.5 m/s when it accelerates at 1.94 m/s^2 for 2.3 s. What is the car's final speed? (Keep in mind direction
Stolb23 [73]

Answer:

29.96m/s

Explanation:

Given parameters:

Initial speed  = 25.5m/s

Acceleration  = 1.94m/s²

Time  = 2.3s

Unknown:

Final speed of the car  = ?

Solution:

To solve this problem, we are going to apply the right motion equation:

    v = u  + at

v is the final speed

u is the initial speed

a is the acceleration

t is the time taken

 Now insert the parameters and solve;

      v  = 25.5 + (1.94 x 2.3)  = 29.96m/s

3 0
3 years ago
Which of the following statements are true concerning the creation of magnetic fields? Check all that apply. Check all that appl
Andreas93 [3]
<h3><u>Answer;</u></h3>
  • A moving electric charge creates a magnetic field at all points in the surrounding region.
  • An electric current in a conductor creates a magnetic field at all points in the surrounding region.
  • A permanent magnet creates a magnetic field at all points in the surrounding region.
<h3><u>Explanation;</u></h3>
  • A magnetic field can be created by running electricity through a wire. All magnetic fields are created by moving charged particles. it is important to also note that charged particles create magnetic fields only when they are moving.
  • The strength of the magnetic field generated or created is proportional to the amount of current flowing through the wire. Thus, increasing the current increases the strength of the magnetic field.
8 0
3 years ago
A 39-foot ladder is leaning against a vertical wall. If the bottom of the ladder is being pulled away from the wall at the rate
Viefleur [7K]

Answer:

The rate of change of the area when the bottom of the ladder (denoted by b) is at 36 ft. from the wall is the following:

\frac{dA}{dt}|_{b=36}=-571.2\, ft^2/s

Explanation:

The Area of the triangle is given by A=h\times b where h=\sqrt{l^2-b^2} (by using the Pythagoras' Theorem) and b is the length of the base of the triangle or the distance between the bottom of the ladder and the wall.

The area is then

A=\sqrt{l^2-b^2}b

The rate of change of the area is given by its time derivative

\frac{dA}{dt}=\frac{d}{dt}\left(\sqrt{l^2-b^2}\cdot b\right)

\implies \frac{dA}{dt}=\frac{d}{dt}\left(\sqrt{l^2-b^2}\right)\cdot b+\frac{db}{dt}\cdot\sqrt{l^2-b^2}

\implies\frac{dA}{dt}=\frac{1}{2\sqrt{l^2-b^2}}\frac{d}{dt}(l^2-b^2)\cdot b+\sqrt{l^2-b^2}}\cdot \frac{db}{dt} Product rule

\implies\frac{dA}{dt}=-\frac{1}{2\sqrt{l^2-b^2}}\cdot 2\cdot b^2\cdot \frac{db}{dt}+\sqrt{l^2-b^2}}\cdot \frac{db}{dt} Chain rule

\implies\frac{dA}{dt}=-\frac{1}{\sqrt{l^2-b^2}}\cdot b^2\cdot \frac{db}{dt}+\sqrt{l^2-b^2}}\cdot \frac{db}{dt}

\implies\frac{dA}{dt}=\frac{db}{dt}\left(-\frac{1}{\sqrt{l^2-b^2}}\cdot b^2+\sqrt{l^2-b^2}}\right)

In here we can identify b=36\, ft, l=39 and \frac{db}{dt}=8\,ft/s.

The result is then

\frac{dA}{dt}=8\left(-\frac{1}{\sqrt{39^2-36^2}}\cdot 36^2+\sqrt{39^2-36^2}}\right)=-571.2\, ft^2/s

3 0
3 years ago
How much energy is required to move an electron through a potential difference of
Tresset [83]
I think it’s going to be the 2nd one
3 0
3 years ago
Other questions:
  • In Dante Controller’s Clock Status tab, you see reports of more than one clock master. The Dante Controller Log also shows devic
    9·1 answer
  • The compound PCl5 decomposes into Cl2 and PCl3. The equilibrium of PCl5(g) Cl2(g) + PCl3(g) has a Keq of 2.24 x 10-2 at 327°C. W
    5·2 answers
  • A4 40 kg girl skates at 3.5 m/s one ice toward her 65 kg friend who is standing still, with open arms. As they collide and hold
    8·1 answer
  • A radio has 100J of energy transferred by electricity. 20J are transferred by heating and 10J are transferred by sound. How many
    14·1 answer
  • If Teresa's daughter is my daughters mother who am I to Teresa?
    9·2 answers
  • Calcium oxide write this in a formula
    13·1 answer
  • What causes the phenomenon of "red shift" and "blue shift" in astronomy? *
    9·2 answers
  • How many significant figures are in 107 moles of sodium
    14·1 answer
  • During a baseball game, a batter hits a high pop-up. if the ball remains in the air for a total of 6.0 s, how high does it rise?
    12·1 answer
  • The work function for magnesium is 3.70 ev. what is its cutoff frequency?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!