Answer:
it snaps
Explanation:
the more force you put on it, the wired out it gets than it snaps. I think
Answer:
A) 21.2 kg.m/s at 39.5 degrees from the x-axis
Explanation:
Mass of the smaller piece = 200g = 200/1000 = 0.2 kg
Mass of the bigger piece = 300g = 300/1000 = 0.3 kg
Velocity of the small piece = 82 m/s
Velocity of the bigger piece = 45 m/s
Final momentum of smaller piece = 0.2 × 82 = 16.4 kg.m/s
Final momentum of bigger piece = 0.3 × 45 = 13.5 kg.m/s
since they acted at 90oc to each other (x and y axis) and also momentum is vector quantity; then we can use Pythagoras theorems
Resultant momentum² = 16.4² + 13.5² = 451.21
Resultant momentum = √451.21 = 21.2 kg.m/s at angle 39.5 degrees to the x-axis ( tan^-1 (13.5 / 16.4)
Q= mcΔT
Where Q is heat or energy
M is mass, c is heat capacitance and t is temperature
You have to convert Celsius into kelvin in order to use this formula I believe
Celsius + 273 = Kelvin
21 + 273 = 294K
363 + 273 = 636K
Now...
Q= (0.003)(0.129)(636-294)
Q= 0.132 J if you are using kilograms, in terms of grams which seems more appropriate the answer would be 132J of energy.
Answer:
a mirror is a glass which reflects the light falls on it ok
Explanation:
just put a light and see ok
please mark me as brainlist
<span>Objective Lenses: Usually you will find 3 or 4 objective lenses on a microscope. They almost always consist of 4X, 10X, 40X and 100X powers. When coupled with a10X (most common) eyepiece lens, we get total magnifications of 40X (4X times10X), 100X , 400X and 1000X.</span>