Which energy is best discribed for you and math
Answer:
Explanation:
mass of astronaut, M = 66.5 kg
mass of tool, m = 2.3 kg
velocity of tool, v = 3.10 m/s
Let the velocity of astronaut is V.
(A) According to the conservation of moemntum
Momentum of astronaut = Momentum of tool
M x V = m x v
66.5 x V = 2.3 x 3.10
V = 0.107 m/s
(B) The direction of motion of astronaut is opposite to the direction of motion of tool.
Answer:
e_12=1-Tc/Th
This is same as the original Carnot engine.
Explanation:
For original Carnot engine, its efficiency is given by
e = 1-Tc/Th
For the composite engine, its efficiency is given by
e_12=(W_1+W_2)/Q_H1
where Q_H1 is the heat input to the first engine, W_1 s the work done by the first engine and W_2 is the work done by the second engine.
But the work done can be written as
W= Q_H + Q_C with Q_H as the heat input and Q_C as the heat emitted to the cold reservoir. So.
e_12=(Q_H1+Q_C1+Q_H2+Q_C2)/Q_H1
But Q_H2 = -Q_C1 so the second and third terms in the numerator cancel
each other.
e_12=1+Q_C2/Q_H1
but, Q_C2/Q_H2= -T_C/T'
⇒ Q_C2 = -Q_H2(T_C/T')
= Q_C1(T_C/T')
(T1 is the intermediate temperature)
But, Q_C1 = -Q_H1(T'/T_H)
so, Q_C2 = -Q_H1(T'/T_H)(T_C/T') = Q_H1(T_C/T_H) So the efficiency of the composite engine is given by
e_12=1-Tc/Th
This is same as the original Carnot engine.
Answer:
B, C, F
Explanation:
Conduction is heat transfer by means of molecular agitation within a material without any motion of the material as a whole. If one end of a metal rod is at a higher temperature, then energy will be transferred down the rod toward the colder end because the higher speed particles will collide with the slower ones with a net transfer of energy to the slower ones.
I would provide the source, but this is not allowed as it seems the website does not encourage learning of well-established materials.
Let me know if you require a further explanation