Lead can be extremely poisonous and was once used in many many paints but caused several deaths from lead poisoning so that was a biggie...
At the center of every chlorophyll molecule, in every plant, there is a magnesium ion. Magnesium is one of the two dozen or so elements that are <em>required </em>for life.
Yo sup??
Let the percentage of K-39 be x
then the percentage of K-40 is 100-(x+0.01)
We know that the net weight should be 39.5. Therefore we can say
(39*x+40*(100-(x+0.01))+38*0.01)/100=39.5
(since we are taking it in percent)
39*x+40*(100-(x+0.01))+38*0.01=3950
39x+4000-40x-0.4+0.38=3950
2x=49.98
x=24.99
=25 (approx)
Therefore K-39 is 25% in nature and K-40 is 75% in nature.
Hope this helps.
The first dissociation for H2X:
H2X +H2O ↔ HX + H3O
initial 0.15 0 0
change -X +X +X
at equlibrium 0.15-X X X
because Ka1 is small we can assume neglect x in H2X concentration
Ka1 = [HX][H3O]/[H2X]
4.5x10^-6 =( X )(X) / (0.15)
X = √(4.5x10^-6*0.15)
∴X = 8.2 x 10-4 m
∴[HX] & [H3O] = 8.2x10^-4
the second dissociation of H2X
HX + H2O↔ X^2 + H3O
8.2x10^-4 Y 8.2x10^-4
Ka2 for Hx = 1.2x10^-11
Ka2 = [X2][H3O]/[HX]
1.2x10^-11= y (8.2x10^-4)*(8.2x10^-4)
∴y = 1.78x10^-5
∴[X^2] = 1.78x10^-5 m