Answer:
9.801 m/s²
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity = 39 ft/s
s = Displacement = 720 cm = 7.2 m
a = Acceleration
Converting to m/s

Equation of motion

Acceleration of the ball is 9.801 m/s²
Answer:
a) p = m1 v1 + m2 v2
, b) dp / dt = m1 a1 + m2 a2
, c) It is equivalent to force
dp / dt = 0
Explanation:
In this problem we have two blocks and the system is formed by the two bodies.
Part A. Initially they ask us to find the moment of the whole system
p = m1 v1 + m2 v2
Part B.
Find the derivative
dp / dt = m1 dv1dt + m2 dv2 / dt
dp / dt = m1 a1 + m2 a2
Part C.
Let's analyze the dimensions
m a = [kg] [m / s2] = [N]
It is equivalent to force
Part d
Acceleration is due to a net force applied
Part e
The acceleration of block 1 is due to the force exerted by block 2 during the moment change
Part f
Force of block 1 on block 2
True f12 = m1a1 f21 = m2a2
Part g
By the law of action and reaction are equal magnitude F12 = f21
Part H
dp / dt = 0
Isolated system F12 = F21 and the masses are constant. The total moment is only redistributed
To solve this problem we will apply the concepts related to resistance as a function of temperature, product of the relationship between the squared voltage and the power. Mathematically this is,

Here,
R = Resistance (At function of temperature)
v = Voltage
P = Power
Then we have,
R at 140°C (7 times room temperature),


The relationship between normal temperature and increased temperature would then be given by,




Therefore the correct value of the group of answer is 1350
115.35 ft
Set the proportion up 37.50/105.50 = 41/x and solve for x
Answer:
The answer is B. It is the one that has the triangle pointing up on the topside of the rope and seems to be a bit bigger than the other triangles.
Explanation: