The 3 and 2 to the right of the components are subscriptions.
Answer: 996 mmHg
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at NTP, weighs equal to the molecular mass and contains avogadro's number
of particles.
According to the ideal gas equation:

P = Pressure of the gas = ?
V= Volume of the gas = 25.5 L
T= Temperature of the gas = 13°C = (273+13) K = 286K
R= Gas constant = 0.0821 atmL/K mol
n= moles of gas= 1.42
(760mmHg=1atm)
Thus pressure of this gas sample is 996 mm Hg.
2NH₃(g) + CO₂(g) → CO(NH₂)₂(s) + H₂O(l)
is the balanced equation for the synthesis of urea.
Heat Transfer Lab
The following represents a lab set up for heat transfer. The cup on the left started with boiling water at 100 degrees C and the cup on the right has water at 20 degrees C. There is an aluminum bar between the two cups allowing heat to transfer from one cup into the other. The set up will be left alone for 20 minutes and temperatures of each cup of water will be recorded every minute for 20 minutes.
mag-aral ka