The correct answer is higher melting point, bound by metal metal bonds.
While alkali metals only have one valence electron, alkaline earth metals have two. Metal to metal connections hold the metals together. Alkaline earth metals have a stronger metallic connection and a higher melting point because they have two valence electrons.
the characteristics that Group 2 metals excel in over Group 1 metals.
- Initial Ionization Potential
- Group 2 items are more difficult than group 1 elements.
- Strong propensity to produce bivalent compounds
As a result, group 2 metals have stronger metallic bonding, which leads to increased cohesive energy and compact atom packing. This explains why group 2 metals are harder and have higher melting and boiling temperatures than group 1 metals.
To learn more about Group 2A(2) refer the link:
brainly.com/question/9431096
#SPJ4
Photosynthesis and cellular respiration go hand and hand. Remember the two equations are just a reverse of the opposite equation.
Cellular Respiration-
C₆H₁₂O₆ + 6O₂ (Yeilds or Makes) 6CO₂ + 6H₂O + ATP (Or Energy)
Photosynthesis-
6CO₂ + 6H₂O + ATP (Or Sunlight) (Yeilds or Makes) C₆H₁₂O₆ + 6O<span>₂
</span>
When a plant goes through photosynthesis it produces oxygen as a waste product, which you should know is what animals use to breathe, well when animals use oxygen in the process, they also make a waste product which happens to be Carbon Dioxide, which a plant uses to make glucose during photosynthesis, so if we didin't have one we wouldn't have the other.
Answer:
shear walls, cross braces, diaphragms, and moment-resisting frames are central to reinforcing a building. Shear walls are a useful building technology that helps to transfer earthquake forces. Made of panels, these walls help a building keep its shape during movement.
Explanation:
Answer:
The equilibrium will go right, increasing the quantities of Y(g) and Z(s), when the amount of X(g) increases.
Explanation:
Equilibrium is a state in which the velocity of the formation of the products is equal to the velocity of the formation of the reactants. Thus, the concentrations remain constant.
By Le Chatêlier's principle, when the equilibrium is disturbed, the equilibrium must shift to reestablish the equilibrium. Thus, when X is put in the container, it intends to decompose and form Y and Z, thus, as higher is the initial X, as higher is the Y and Z formed.