Isotopes are variants atoms of the same element, having same number of atomic(proton) number but different number of neutrons and mass number.
Considering iron-60
- The atomic number which also equals the number of protons for the element iron as can be seen on the periodic table is 26
- The name iron-60 also tells us that this particlar isotope's mass number is 60.
- The chemical symbol for Iron is Fe
Now expressing as an isotope iron-60 becomes ⁶⁰₂₆Fe ( very unstable )
Other stable isotopes of Iron include ⁵⁴₂₆Fe , ⁵⁶₂₆Fe, ⁵⁷₂₆Fe and ⁵⁸₂₆Fe
See more here: brainly.com/question/11236150
D = m / V
d = 5.0 / 45.0
d = 0.111 g/cm³
If Ka for HBrO is 2. 8×10^−9 at 25°C, then the value of Kb for BrO− at 25°C is 3.5× 10^(-6).
<h3>
What is base dissociation constant?
</h3>
The base dissociation constant (Kb) is defined as the measurement of the ions which base can dissociate or dissolve in the aqueous solution. The greater the value of base dissociation constant greater will be its basicity an strength.
The dissociation reaction of hydrogen cyanide can be given as
HCN --- (H+) + (CN-)
Given,
The value of Ka for HCN is 2.8× 10^(-9)
The correlation between base dissociation constant and acid dissociation constant is
Kw = Ka × Kb
Kw = 10^(-14)
Substituting values of Ka and Kw,
Kb = 10^(-14) /{2.8×10^(-9) }
= 3.5× 10^(-6)
Thus, we find that if Ka for HBrO is 2. 8×10^−9 at 25°C, then the value of Kb for BrO− at 25°C is 3.5× 10^(-6).
DISCLAIMER: The above question have mistake. The correct question is given as
Question:
Given that Ka for HBrO is 2. 8×10^−9 at 25°C. What is the value of Kb for BrO− at 25°C?
learn more about base dissociation constant:
brainly.com/question/9234362
#SPJ4