Answer:
Depending on the relative position of the Earth the Sun and Neptune in the Earths orbit the distances are;
The closest (minimum) distance of Neptune from the Earth is 29 AU
The farthest (maximum) distance of Neptune fro the Earth is 31 AU
Explanation:
The following parameters are given;
The distance from the Earth to the Sun = 1 AU
The distance of Neptune from the Earth = 30 AU
We have;
When the Sun is between the Earth and Neptune, the distance is found by the relation;
Distance from the Earth to Neptune = 30 + 1 = 31 AU
When the Earth is between the Sun and Neptune, the distance is found by the relation;
Distance from the Earth to Neptune = 30 - 1 = 29 AU
Therefore, the closest distance from Neptune to the Earth in the Earth's Orbit is 29 AU
The farthest distance from Neptune to the Earth in the Earth's orbit is 31 AU.
Explanation:
The internal heat sources for Jupiter and Saturn derive from primordial heat resulting from the initial gravitational contraction of each planet. Jupiter also generates heat by slow contraction, which liberates substantial gravitational energy. A significant part of Saturn’s heat comes from the release of gravitational energy from helium separating from the lighter hydrogen and sinking to its core. What one considers to be a star is a matter of definition, as we discuss in more detail in the chapter on The Birth of Stars and the Discovery of Planets outside the Solar System. While both Jupiter and Saturn generate much of their energy internally, they are not large enough (by a significant factor) to support nuclear reactions in their interiors, and so are not considered to be stars.
Increasing the masses of the objects and decreasing the distance between the objects
The initial velocity of the sled will be 7.34 m/sec. V is the initial velocity of the sled.
<h3>What is the law of conservation of momentum?</h3>
According to the law of conservation of momentum, the momentum of the body before the collision is always equal to the momentum of the body after the collision.
The given data in the problem is;
(m₁) mass of child = 38 kg
(u₁) is the initial velocity child = 2.2 m/s
(m₂) is the mass of sled = 68 kg
(u₂) is the initial velocity of sled = ?
(v) is the velocity after collision = 5.5 m/s
According to the law of conservation of momentum;
Momentum before collision =Momentum after collision

Hence,the initial velocity of the sled will be 7.34 m/sec.
To learn more about the law of conservation of momentum refer;
brainly.com/question/1113396
#SPJ1