I don't know but look on the internet or use a calculator
• Ask questions when you need help.
• Take notes.
• Keep reviewing to keep the material in your head.
Answer:
Nuclear power comes from nuclear fission
Nuclear power plants use heat produced during nuclear fission to heat water. In nuclear fission, atoms are split apart to form smaller atoms, releasing energy. Fission takes place inside the reactor of a nuclear power plan
Explanation:
Answer:
17.934 kg of water
Explanation:
If balanced equation is not given; this format can come in handy.
For any alkane of the type : CₙH₂ₙ₊₂ , it's combustion reaction will follow:
2CₙH₂ₙ₊₂ + (3n+1) O₂ → (2n)CO₂ + 2(n+1) H₂O
For butane:
2C₄H₁₀(g) + 13O₂(g) → 8CO₂(g) + 10H₂O(l)
2 moles of butane gives 10 moles of water.
1 mol of any substance has Avogadro number(N) of molecules in it( 6.022 x 10²³)
Mass of 1 mole of any substance is equal to it's molar mass
So, if 2 x N molecules of butane gives 10 x 18 g of water.
Then 1.2 x 10²⁶ molecules will give:

= 17.934 x 10³ g of water
= 17.934 kg of water
55.9 kPa; Variables given = volume (V), moles (n), temperature (T)
We must calculate <em>p</em> from <em>V, n</em>, and <em>T</em>, so we use <em>the Ideal Gas Law</em>:
<em>pV = nRT</em>
Solve for <em>p</em>: <em>p = nRT/V</em>
R = 8.314 kPa.L.K^(-1).mol^(-1)
<em>T</em> = (265 + 273.15) K = 538.15 K
<em>V</em> = 500.0 mL = 0.5000 L
∴ <em>p</em> = [6.25 x 10^(-3) mol x 8.314 kPa·L·K^(-1)·mol^(-1) x 538.15 K]/(0.5000 L) = 55.9 kPa