Answer:
The answer to your question is below
Explanation:
A.
[H₃O⁺] = 2 x 10⁻¹⁴ M
pH = ?
Formula
pH = - log [H₃O⁺]
Substitution
pH = - log [2 x 10⁻¹⁴]
Result
pH = 13.7
B.
[H₃O⁺] = ?
pH = 3.12
Formula
pH = - log [H₃O⁺]
Substitution
3.12 = - log [H₃O⁺]
![10^{-3.12} = [H_{3} O^{+}]](https://tex.z-dn.net/?f=10%5E%7B-3.12%7D%20%3D%20%5BH_%7B3%7D%20O%5E%7B%2B%7D%5D)
Result
[H₃O⁺] = 7.59 M
Answer:
Mario uses a hot plate to heat a beaker of 50mL of water. He used a thermometer to measure the
temperature of the water. The water in the beaker began to boil when it reached the temperature of
100'C. If Mario completes the same experiment with 25mL of water, what would happen to the boiling
point?
a) The water will not reach a boil.
b) The boiling point of water will increase.
c) The boiling point of water will decrease.
d) The boiling point of water will stay the same.
Explanation:
a) To find the mass after t years:we will use this formula:
A = Ao / 2^n when A =the amount remaining
and Ao = the initial amount
and n = t / t(1/2)
by substitution:
∴ A = 200 mg/ 2^(t/30y)b) Mass after 90 y :by using the previous formula and substitute t by 90 y
A = 200mg/ 2^(90y/30y)
∴ A = 25 mgC) Time for 1 mg remaining:when A= Ao/ 2^(t/t(1/2)
so, by substitution:
1 mg = 200 mg / 2^(t/30y)
∴2^(t/30y) = 200 mg by solving for t
∴ t = 229 y