Answer:
The total energy to break all the bonds in 1 mole of 1-propanol, C₃H₈O, is 4411 kJ/mol
Explanation:
We note that propanol, C₃H₈O is also known as 1-propanol is written as follows;
CH₃CH₂CH₂OH which gives
CH₃-CH₂-CH₂-OH
Hence, the total number of bonds are;
C-H Bonds = 3 + 2 + 2 = 7
C-O Bonds = 1
O-H Bond = 1
C-C Bonds = 2
The bond energies are as follows;
C-H Bonds = 413 kJ/mol
C-O Bonds = 358 kJ/mol
O-H Bond = 468 kJ/mol
C-C Bonds = 347 kJ/mol
Energy required to break the bonds in 1-propanol is therefore;
C-H Bonds = 413 kJ/mol × 7 = 2,891 kJ/mol
C-O Bonds = 358 kJ/mol × 1 = 358 kJ/mol
O-H Bond = 468 kJ/mol × 1 = 468 kJ/mol
C-C Bonds = 347 kJ/mol × 2 = 694 kJ/mol
The total energy to break all the bonds in 1 mole of 1-propanol = 4411 kJ/mol.
The weight itself technically will not change. The pull of gravity lessens, making it appear that it is lighter on the moon.
"M" I believe is the symbol for molarity.
<span>K D = 1.0g/ 28 ml 0.0357
-------------- = ---------- = 1.65
1.0 g/46 ml 0.0217
is the distribution coefficient of caffeine in this solvent system</span>
Answer:
Ca: 1
Cl: 2
Explanation:
Since there is no subscript but there is the element, its assumed that there is at least 1, otherwise it would'nt be there