Answer:
9.17 m/s
Explanation:
Impulse = change in momentum
FΔt = mΔv
(166 N) (0.39 s) = (7.06 kg) Δv
Δv = 9.17 m/s
C. movement of glaciers.
Good Luck.
Technically, we have no way of knowing that without seeing Figure 16-2.
So the question should be reported for incomplete content. But I'm
going to take a wild stab at it anyway.
There's so much discussion of 'cylinder' and 'strokes' in the question,
I have a hunch that it's talking about the guts of a 4-stroke internal
combustion gasoline engine.
If I'm right, then the temperature of the material within the cylinder is
greatest right after the spark ignites it. At that instant, the material burns,
explodes, expands violently, and drives the piston down with its stiff shot
of pressure.
This is obviously happening because of the great, sudden increase in
temperature when the material ignites and explodes.
It hits the piston with pressure, which leads directly to the power stroke.
One of the essential concepts to solve this problem is the utilization of the equations of centripetal and gravitational force.
From them it will be possible to find the speed of the body with which the estimated time can be calculated through the kinematic equations of motion. At the same time for the calculation of this speed it is necessary to clarify that this will remain twice the ship, because as we know by relativity, when moving in the same magnitude but in the opposite direction, with respect to the ship the debris will be double speed.
By equilibrium the centrifugal force and the gravitational force are equal therefore


Where
m = mass spacecraft
v = velocity
G = Gravitational Universal Constant
M = Mass of earth
Radius of earth and orbit
Re-arrange to find the velocity





Replacing with our values we have


From the cinematic equations of motion we have to
Remember that the speed is double for the counter-direction of the trajectories.
Replacing


Therefore the time required is 3.778s