do you have anymore numbers to add to this problem??
Answer : The molarity after a reaction time of 5.00 days is, 0.109 M
Explanation :
The integrated rate law equation for second order reaction follows:
![k=\frac{1}{t}\left (\frac{1}{[A]}-\frac{1}{[A]_o}\right)](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B1%7D%7Bt%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%5BA%5D_o%7D%5Cright%29)
where,
k = rate constant = 
t = time taken = 5.00 days
[A] = concentration of substance after time 't' = ?
= Initial concentration = 0.110 M
Now put all the given values in above equation, we get:
![9.7\times 10^{-6}=\frac{1}{5.00}\left (\frac{1}{[A]}-\frac{1}{(0.110)}\right)](https://tex.z-dn.net/?f=9.7%5Ctimes%2010%5E%7B-6%7D%3D%5Cfrac%7B1%7D%7B5.00%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%280.110%29%7D%5Cright%29)
![[A]=0.109M](https://tex.z-dn.net/?f=%5BA%5D%3D0.109M)
Hence, the molarity after a reaction time of 5.00 days is, 0.109 M
Answer is: both reactions
are exothermic.
<span>
In exothermic reactions, heat is released and enthalpy of reaction is less than
zero (as it show second chemical reaction).
According to Le Chatelier's principle when the reaction
is exothermic heat is included as a product (as it show first
chemical reaction).</span>
You need .556M HCL to neutralize that
Answer:
87.5 mi/hr
Explanation:
Because a = Δv / Δt (a = vf - vi/ Δt), we need to find the acceleration first to know the change in velocity so we can determine the final velocity.
vf = 60 mi/hr
vi = 0 mi/hr
Δt = 8 secs
a = vf - vi/ Δt
= 60 mi/hr - 0 mi/hr/ 8 secs
= 60 mi/hr / 8 secs
= 7.5 mi/hr^2
Now that we know the acceleration of the car is 7. 5 mi/hr^2, we can substitute it in the acceleration formula to find the final velocity when the initial velocity is 50 mi/hr after 5 secs.
vi = 50 mi/ hr
Δt = 5 secs
a = 7.5 mi/ hr^2
a = vf - vi/ Δt
7.5 = vf - 50 mi/hr / 5 secs
37.5 = vf - 50
87.5 mi/ hr = vf