Answer:
a) 113N
b) 0.37
Explanation:
a) Using the Newton's second law:
\sum Fx =ma
Since the crate doesn't move (static), acceleration will be zero. The equation will become:
\sum Fx = 0
\sumFx = Fm - Ff = 0.
Fm is the applied force
Ff is the frictional force
Since Fm - Ff = 0
Fm = Ff
This means that the applied force is equal to the force of friction if the crate is static.
Since applied force is 113N, hence the magnitude of the static friction force will also be 113N
b) Using the formula
Ff = nR
n is the coefficient of friction
R is the reaction = mg
R = 31.2 × 9.8
R = 305.76N
From the formula
n = Ff/R
n = 113/305.76
n = 0.37
Hence the minimum possible value of the coefficient of static friction between the crate and the floor is 0.37
Answer:
A
Explanation:
Straight line with a negative slope
On a velocity_time graph
Answer:
The answer is "use manual motherboard".
Explanation:
The motherboard is also known as the mainboard, it an electronic circuit board, that can connect with the CPU, RAM, and other networking equipment parts. It is also is known as a chipset, that differ widely in style, context, power source, height and performance (Form Factor).
All the data of the computer is stored memory, which checks into the motherboard, that the SATA port which you are connected to is still going to run at 6.0Gbps or not.
Answer:
Explanation:
We shall apply Stefan's formula
E = AσT⁴
When T = 300
I₁ = Aσ x 300⁴
When T = 400K
I₂ = Aσ x 400⁴
I₂ / I₁ = 400⁴ / 300⁴
= 256 / 81
= 3.16
I₂ = 3.16 I₁ .