-- What's the volume of a cylinder with radius=1m and height=55m ?
( Volume of a cylinder = π R² h )
-- How much does that volume of water weigh ?
1 liter of water = 1 kilogram of mass
Weight = (mass) x (acceleration of gravity)
-- What's the area of the bottom of that 1m-radius cylinder ?
Pressure = (force) / (area)
The length of a vector arrow represents an magnitude
First choice: the inability of current technology to capture
large amounts of the
Sun's energy
Well, it's true that large amounts of it get away ... our 'efficiency' at capturing it is still rather low. But the amount of free energy we're able to capture is still huge and significant, so this isn't really a major problem.
Second choice: the inability of current technology to store
captured solar
energy
No. We're pretty good at building batteries to store small amounts, or raising water to store large amounts. Storage could be better and cheaper than it is, but we can store huge amounts of captured solar energy right now, so this isn't a major problem either.
Third choice: inconsistencies in the availability of the resource
I think this is it. If we come to depend on solar energy, then we're
expectedly out of luck at night, and we may unexpectedly be out
of luck during long periods of overcast skies.
Fourth choice: lack of
demand for solar energy
If there is a lack of demand, it's purely a result of willful manipulation
of the market by those whose interests are hurt by solar energy.
Answer:
The velocity is
Explanation:
From the question we are told that
The mass of the bullet is
The initial speed of the bullet is
The mass of the target is
The initial velocity of target is
The final velocity of the bullet is is
Generally according to the law of momentum conservation we have that
=>
=>