Answer:
Herbivores only eat plants . Remember HERBS are PLANTS.
Carnivores only eat meat. Remember CARNE = MEAT in Spanish.
Omnivores eat MEAT & PLANTS.
Explanation:
Differences are what they eat, similarities omnivores eat both.
To solve this problem, we use Beer's Law: A= ε.l.c
A is the absorbance- 0,558
<span>ε is</span> the molar absorptivity- is <span>15000 </span><span><span>L⋅mol-1</span><span>cm-1</span></span>
<span>l is </span>the length of the cuvette- 1 cm
<span>c is</span> the molar concentration
Applying the formula,
0,558= 15000 x 1 x c
0,558/15000= c
c= <span>3.72×<span>10⁻⁵ </span> <span>mol⋅L<span>⁻¹</span></span></span>
<span />
Answer:
will this help ?
Explanation:
(108Hs) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be synthesized was 265Hs in 1984. There are 12 known isotopes from 263Hs to 277Hs and 1–4 isomers. The most stable isotope of hassium cannot be determined based on existing data due to uncertainty that arises from the low number of measurements. The confidence interval of half-life of 269Hs corresponding to one standard deviation (the interval is ~68.3% likely to contain the actual value) is 16 ± 6 seconds, whereas that of 270Hs is 9 ± 4 seconds. It is also possible that 277mHs is more stable than both of these, with its half-life likely being 110 ± 70 seconds, but only one event of decay of this isotope has been registered as of 2016.[1][2].
Evaporation and straining.and idk the other two
Answer:
Explanation:
Naming of the ionic compounds:-
- The name of the cation is written first and the the name of the anion is written after the name of the cation separated by single space.
- The negative ion is written next and a suffix is added at the end of the negative ion. The suffix written is '-ide'.
-
In case of transition metals, the oxidation state are written in roman numerals in bracket in front of positive ions.
Hence, given ionic compound:-
Cobalt(II) phosphate
So, Cobalt will have a positive charge of +2
Phosphate is
So, the formula is :-
Co
2 3