The number of moles of NH3 that could be made would be 0.5 moles
<h3>Stoichiometric reactions</h3>
From the balanced equation of the reaction:
N2 (g) + 3 H2(g) ----> 2NH3 (g)
The mole ratio of N2 to H2 is 1:3
Thus, for 0.50 moles of N2, 1.5 moles of H2 should be present. But 0.75 moles of H2 was allowed to react. Meaning that H2 is limiting in this case.
Mole ratio of H2 and NH3 = 3:2
Thus for 0.75 moles H2, the mole of NH3 that would be produced will be:
2 x 0.75/3 = 0.5 moles
More on stoichiometric calculations can be found here: brainly.com/question/8062886
Answer:- There are
moles.
Solution:- It is a unit conversion problem where we are asked to convert mg of aspartame to moles. Aspartame is
and it's molar mass is 294.31 grams per mole.
mg are converted to grams and then the grams are converted to moles as:

=
moles of aspartame
So, there would be
moles of aspartame in 1.00 mg of it.
The atomic number is the number of protons in the nucleus of an atom. The number of protons define the identity of an element.
Answer: permanent removal of hair by energy or heat
Explanation:
Answer:
I am explain you in image