Answer:
The correct option is volume stays constant
Explanation:
When a gas container (in this case an aerosol can) is subjected to heat (from fire), the temperature of the can and subsequently <u><em>the temperature of the gas itself increases</em></u>, an increase in the temperature of the gas cause <u><em>the pressure to also increase;</em></u> as the gas molecules will collide more and faster with each other and against the wall of the can. However, the volume of the gas will remain the same as before it was subjected to the heat - the gas particles do not get destroyed or increased as a result of the heat (law of conservation of matter explains this).
Answer: left
Explanation: The element that appears farthest to the
✔ left
is written first in the chemical name of a covalent compound.
Answer: I am confident the answer is B
Explanation:
forgive me if im wrong
Answer:
The <u>equilibrium constant</u> is:

Explanation:
The correct equation is:
Thus, with the equilibrium concentrations you can calculate the equilibrium constant, Kc.
The equation for the equilibrium constant is:
![k_c=\dfrac{[NH_3]^2}{[N_2]\cdot [H_2]^3}](https://tex.z-dn.net/?f=k_c%3D%5Cdfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5Ccdot%20%5BH_2%5D%5E3%7D)
Substituting:


Answer: There is one way to write it but i’ll also provide an unbalanced equation and a balanced one.
Explanation:
Unbalanced : Ba (aq) + Cl2 (aq)—-> BaCl (aq)
Balanced : 2Ba (aq) + Cl2 (aq)—> 2BaCl(aq)