Answer:
The average impact force is 12000 newtons.
Explanation:
By Impact Theorem we know that impact done by the sledge hammer on the chisel is equal to the change in the linear momentum of the former. The mathematical model that represents the situation is now described:
(1)
Where:
- Average impact force, in newtons.
- Duration of the impact, in seconds.
- Mass of the sledge hammer, in kilograms.
,
- Initial and final velocity, in meters per second.
If we know that
,
,
and
, then we estimate the average impact force is:


The average impact force is 12000 newtons.
Answer:
here`s your answer
Winds often slow down during an eclipse as the atmosphere temporarily settles. Heating causes the atmosphere to mix and bubble, just like a pot of water on the stove. As it warms, the water level in the pot rises because warm objects, including water, expand. In the case of the atmosphere, it also expands when heated.
Explanation:
The "pitch" of a sound is the impression your brain forms
that corresponds to the frequency of the sound wave.
When the frequency is high, your brain says "high pitch".
When the frequency is low, your brain says "low pitch".
The far right.
Fg is gravity which always acts down and since we assume the floor is flat the normal, Fn, acts opposite gravity, so straight up.
But you’re probably wondering about the pushing force, Fp, and the friction force, Ff. For the Fp, consider where the applied force is coming from. The head of the broom is on the floor and the man’s arms, where he’s applying the force from, is above and to the left, so when the man pushes the broom the force is down and to the right. The broom my not be moving down, but the applied force is still in that direction. And Ff always acts against motion so since the broom moves to the right, the friction is to the left.
Answer:
Acceleration is -30000 mi/h²
Distance travelled in the 3 seconds of deceleration is 261.888 feet
Explanation:
t = Time taken for the car to slow down = 3 s =
u = Initial velocity = 75 mi/h
v = Final velocity = 50 mi/h
s = Displacement
a = Acceleration
Equation of motion

Acceleration is -30000 mi/h²

Converting to feet
1 mile = 5280 feet
0.0496 mile = 0.0496×5280 = 261.888 feet
Distance travelled in the 3 seconds of deceleration is 261.888 feet