Water and orange juice
Or orange juice and sodium chloride
The enthalpy of combustion of 1 mole of benzene is 3169 kJ/mol .
The first step in answering this question is to obtain the balanced thermochemical equation of the reaction. The thermochemical equation shows the amount of heat lost or gained.
The thermochemical equation for the combustion of benzene is;
2 C6H6(l) + 15 O2(g) → 12 CO2(g) + 6 H2O(g) ΔrH° = -3169 kJ/mol
We can see that 1 mole of benzene releases about 3169 kJ/mol of heat.
Learn more: brainly.com/question/13164491
Answer:

Explanation:
For a first order reaction the rate law is:
![v=\frac{-d[A]}{[A]}=k[A]](https://tex.z-dn.net/?f=v%3D%5Cfrac%7B-d%5BA%5D%7D%7B%5BA%5D%7D%3Dk%5BA%5D)
Integranting both sides of the equation we get:
![\int\limits^a_b {\frac{d[A]}{[A]}} \, dx =-k\int\limits^t_0 {} \, dt](https://tex.z-dn.net/?f=%5Cint%5Climits%5Ea_b%20%7B%5Cfrac%7Bd%5BA%5D%7D%7B%5BA%5D%7D%7D%20%5C%2C%20dx%20%3D-k%5Cint%5Climits%5Et_0%20%7B%7D%20%5C%2C%20dt)
where "a" stands for [A] (molar concentration of a given reagent) and "b" is {A]0 (initial molar concentration of a given reagent), "t" is the time in seconds.
From that integral we get the integrated rate law:
![ln\frac{[A]}{[A]_{0} } =-kt](https://tex.z-dn.net/?f=ln%5Cfrac%7B%5BA%5D%7D%7B%5BA%5D_%7B0%7D%20%7D%20%3D-kt)
![[A]=[A]_{0}e^{-kt}](https://tex.z-dn.net/?f=%5BA%5D%3D%5BA%5D_%7B0%7De%5E%7B-kt%7D)
![ln[A]=ln[A]_{0} -kt](https://tex.z-dn.net/?f=ln%5BA%5D%3Dln%5BA%5D_%7B0%7D%20-kt)
![k=\frac{ln[A]_{0}-ln[A]}{t}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7Bln%5BA%5D_%7B0%7D-ln%5BA%5D%7D%7Bt%7D)
therefore k is

CH3COOH
Explanation:
hope I helped
if you get the answer right mark me as brainlyst