Answer:
648.5 mL
Explanation:
Here we will assume that the pressure of the gas is constant, since it is not given or specified.
Therefore, we can use Charle's law, which states that:
"For an ideal gas kept at constant pressure, the volume of the gas is proportional to its absolute temperature"
Mathematically:

where
V is the volume of the gas
T is its absolute temperature
The equation can be rewritten as

where in this problem we have:
is the initial volume of the gas
is the initial temperature
is the final temperature
Solving for V2, we find the final volume of the gas:

The graph is not given in the question, so, the required graph is attached below:
Answer:
According to the graph, the relationship between the density of the sugar solution and the concentration of the sugar solution is directly proportional to each other as they both are increasing exponentially.
The graph shows that, the density of sugar solution will increase with the increase in concentration of sugar in the solution.
Answer:
The volume of water in water bath is 1,011 Liters.
Explanation:
Length of the water bath, L = 1.85 m
Width of the water bath, W= 0.810 m
Height of the water bath ,H= 0.740 m
Height of the water in water bath, h= 0.740 m - 2.57 inches
1 m = 39.37 inch

Volume of the water in bath = L × W × h



The volume of water in water bath is 1,011 Liters.
The rates of the forward and reverse reaction depends on the temperature on which the reaction will proceed, either endothermic of exothermic. it also depends of the concentration of the reactants and products. if the reaction is exothermic, so if the reaction temperature is increased then it will favor the forward reaction, then if the reaction is lowered then it will favor the reverse reaction