If 5 ml of 0.5 M NaOH is added to 20 ml each of Buffer b and buffer c. Both of the buffers' pHs won't change since a buffer has a property that if it is added to another solution, acidic or basic, its pH won't change.
<span>An acid is a compound that produces hydrogen ions when dissolved in water. The pH of acid is less than 7 because it is rich in H+ concentration. Basic solutions have pH greater than 7 because it is rich in OH-. Neutral solutions meanwhile have pH equal to 7.</span>
According to the balanced equation of the reaction:
2C2H2 + 5O2 → 4CO2 + 2H2O
So we can mention all as liters,
A) as we see that 2 liters of C2H2 react with 5 liters of oxygen to produce 4 liters of CO4 and 2 liters of H2O
So, when we have 75L of CO2
and when we have 2 L of C2H2 reacts and gives 4 L of CO2
2C2H2 → 4CO2
∴ The volume of C2H2 required is:
= 75L / 2
= 37.5 L
B) and, when we have 75 L of CO2
and 4CO2 → 2H2O
∴ the volume of H2O required is:
= 75 L /2
= 37.5 L
C) and from the balanced equation and by the same way:
when 5 liters O2 reacts to give 4 liters of CO2
and we have 75 L of CO2:
5 O2 → 4 CO2
?? ← 75 L
∴ the volume of O2 required is:
= 75 *(5/4)
= 93.75 L
D) about the using of the number of moles the answer is:
no, there is no need to find the number of moles as we called everything in the balanced equation by liters and use it as a liter unit to get the volume, without the need to get the number of moles.
The six metalloids are boron, silicon, germanium, arsenic, antimony, and tellerium.
The IUPAC rules are
a) Find out the longest chain of carbon in the given organic compound
b) We will name the longest chain.
c) We will identify the main functional group and will assign a suffix to the compound.
d) We will number the carbons in the longest chain selected so that the attached groups attain lowest numeral as substituent
e) We will name the side groups or chains.