Answer:
1.15 atm
Explanation:
According to Dalton's law of partial pressures, the total pressure is the sum of all the partial pressures of the gases present in the mixture.
Therefore we have:
Total pressure = partial pressure of carbon monoxide + partial pressure of oxygen + partial pressure of carbon dioxide
We were given the following:
Total pressure = 2.45 atm
Pressure of oxygen = 0.65 atm
Pressure of carbon monoxide = x
Pressure of carbon dioxide = 0.65 atm
Therefore:
2.45 = x + 0.65 + 0.65
2.45 = x + 1.3
x = 2.45 - 1.3
x = 1.15 atm
Answer:
800 lb of pure solvent , 1700 lb of 20% solution and 500 lb of 10% solution will be mixed to form 3000 lb of 13 % solution .
Explanation:
3000 lb of 13% solution is required .
Total adhesive in weight = 3000 x .13 = 390 lb of adhesive
Available = 500 lb of 10% solution = 50 lb of adhesive
Rest = 390 - 50 = 340 lb required .
rest mass of solution = 3000 - 500 = 2500 lb
mass of adhesive required = 340 lb
Let the mass of 20% required be V
mass of adhesive = .20 V
.20 V = 340
V = 1700
rest of the volume = 2500 - 1700 = 800 lb which will be of pure solvent
So 800 lb of pure solvent , 1700 lb of 20% solution and 500 lb of 10% solution will be mixed to form 3000 lb of 13 % solution .
Trace evidence can end up transferring to the crime scene through Locard's Exchange Principle, which states that whenever two things come into contact with one another, there is an exchange of physical material A.K.A evidence. This exchange is most often done through physical contact, such as a struggle or a suspect attempting to hide evidence or alter the crime scene. It can even involve a suspect's shirt sleeve brushing against some wet paint.
I hope I helped!
Two steps by inspection 1 qt = 0.25 gallons, 13.6 g/mL = 13.6 kg/L
0.25 gallon x 3.785411784 L/gallon x 13.6 kg/L x 1 lb/0.45359237 kg = 28.374 lb.
Hope this Helps!
For example, copper is used for electrical<span> wiring because it is a </span>good conductor of electricity<span>. </span>Metal<span> particles are held together by strong metallic bonds, which is why they have high melting and boiling points. The free electrons in </span>metals<span> can move through the </span>metal<span>, allowing </span>metals<span> to conduct </span>electricity<span>.</span>