Answer: 12.0 milliliters of 6.50 M HCl ( aq ) are required to react with 2.55 g Zn.
Explanation:
moles =
moles of zinc =
The balanced chemical equation is :

According to stoichiometry:
1 mole of zinc reacts with = 2 moles of HCl
Thus 0.0390 moles of zinc reacts with =
moles of HCl
To calculate the volume for given molarity, we use the equation:
.....(1)
Molarity of
solution = 6.50 M
Volume of solution = ?
Putting values in equation 1, we get:


Thus 12.0 ml of 6.50 M HCl ( aq ) are required to react with 2.55 g Zn
Answer:
Physical Property
Explanation:
Density, mass, volume, color, melting and boiling points, etc. are all physical properties. No matter what changes, the chemical makeup stays the same.
Flamability, acidity, toxicity, etc. are chemical properties, because they chemically change the makeup of the object/thing.
Answer:
The gas argon does not reach a state of vibrational excitation when infrared radiation strikes this gas.
Explanation:
The dry atmosphere is composed almost entirely of nitrogen (in a volumetric mixing ratio of 78.1%) and oxygen (20.9%), plus a series of oligogases such as argon (0.93%), helium and gases of greenhouse effect such as carbon dioxide (0.035%) and ozone. In addition, the atmosphere contains water vapor in very variable amounts (about 1%) and aerosols.
Greenhouse gases or greenhouse gases are the gaseous components of the atmosphere, both natural and anthropogenic, that absorb and emit radiation at certain wavelengths of the infrared radiation spectrum emitted by the Earth's surface, the atmosphere and clouds . In the Earth's atmosphere, the main greenhouse gases (GHG) are water vapor (H2O), carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4) and ozone (O3 ). There is also in the atmosphere a series of greenhouse gases (GHG) created entirely by humans, such as halocarbons (compounds containing chlorine, bromine or fluorine and carbon, these compounds can act as potent greenhouse gases in the atmosphere and they are also one of the causes of the depletion of the ozone layer in the atmosphere) regulated by the Montreal Protocol. In addition to CO2, N2O and CH4, the Kyoto Protocol sets standards regarding sulfur hexafluoride (SF6), hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs).
The difference between argon and greenhouse gases such as CO2 is that the individual atoms in the argon do not have free bonds and therefore do not vibrate. As a consequence, it does not reach a state of vibrational excitation when infrared radiation strikes this gas.