Boiling-point elevation is a colligative property.
That means, the the boiling-point elevation depends on the molar content (fraction) of solute.
The dependency is ΔTb = Kb*m
Where ΔTb is the elevation in the boiling point, kb is the boiling constant, and m is the molality.
A solution of 6.00 g of Ca(NO3) in 30.0 g of water has 4 times the molal concentration of a solution of 3.00 g of Ca(NO3)2 in 60.0 g of water.:
(6.00g/molar mass) / 0.030kg = 200 /molar mass
(3.00g/molar mass) / 0.060kg = 50/molar mass
=> 200 / 50 = 4.
Then, given the direct proportion of the elevation of the boiling point with the molal concentration, the solution of 6.00 g of CaNO3 in 30 g of water will exhibit a greater boiling point elevation.
Or, what is the same, the solution with higher molality will have the higher boiling point.
Answer:
220mol.
Explanation:
Water is H2O. Hydrogen gas is H2. Oxygen gas is O2. You have 220mol of O and 460mol of H. O is the limiting reactant. The ratio O:H2O is 1:1. 220*1=220
Answer:
d
. Sc2O5
Explanation:
Hello,
In this case, when forming oxides from a metal and oxygen, for us to find out each element's subscript, we must exchange them as shown below, considering +5 for scandium:
For that reason, the answer is d
. Sc2O5
Best regards.
Answer:
1) When 6.97 grams of sodium(s) react with excess water(l), 56.0 kJ of energy are evolved.
2) When 10.4 grams of carbon monoxide(g) react with excess water(l), 1.04 kJ of energy are absorbed.
Explanation:
1) The following thermochemical equation is for the reaction of sodium(s) with water(l) to form sodium hydroxide(aq) and hydrogen(g).
2 Na(s) + 2H₂O(l) ⇒ 2NaOH(aq) + H₂(g) ΔH = -369 kJ
The enthalpy of the reaction is negative, which means that 369 kJ of energy are evolved per 2 moles of sodium. The energy evolved for 6.97 g of Na (molar mass 22.98 g/mol) is:
2) The following thermochemical equation is for the reaction of carbon monoxide(g) with water(l) to form carbon dioxide(g) and hydrogen(g).
CO(g) + H₂O(l) ⇒ CO₂(g) + H₂(g) ΔH = 2.80 kJ
The enthalpy of the reaction is positive, which means that 2.80 kJ of energy are absorbed per mole of carbon monoxide. The energy evolved for 10.4 g of CO (molar mass 28.01 g/mol) is:
Explanation:
Bond order is inversely proportional to the bond length.
In molecule. one nitrogen is double bonded to nitrogen and one oxygen is single bonded to nitrogen and hydrogen bond.
- Bond order between the (N=O) bond is 2 which means that bond length between the (N=O) bond is shorter than that of the N-O bond.
- Bond order between the (N-O) bond is 1 which means that bond length of the N-O bond is longer than that of the bond length of (N=O) bond.