Answer:
1.26 × 10^-8 M
Explanation:
We are given;
Number of moles of mercury (i) chloride as 0.000126 μmol
Volume is 100 mL
We are required to calculate the concentration of the solution.
We need to know that;
Concentration is also known as molarity is given by;
Molarity = Number of moles ÷ Volume
Number of moles = 1.26 × 10^-10 Moles
Volume = 0.01 L
Therefore;
Concentration = 1.26 × 10^-10 Moles ÷ 0.01 L
= 1.26 × 10^-8 M
Thus, the molarity of the solution is 1.26 × 10^-8 M
Answer:
The IUPAC name of the compound has already been given which is 2,2-dimethyl-4-ethylheptane.
Explanation:
The IUPAC (International Union of Pure and Applied Chemistry) is an authority in chemistry that provides a guideline and standardized methods in the naming of compounds formed from the periodic table.
In order the give an IUPAC name to a compound, certain steps needs to be followed, these includes:
--> Identify the functional group in the compound as this will form the suffix. For example if the functional group is an alkane the suffix will be -ane.
--> Identify the longest carbon chain (it may not be a straight chain) that contains the functional group. This forms the prefix. Example: if the longest carbon chain is 7 carbon atoms then the prefix will be hept-
--> All the carbons of the longest chain should be numbered
--> Identify branched groups on the chain and name them according to the number of carbon atoms. They usually end with -yl.
--> Finally, combine the elements of the name is a single word.
The structural formula of the IUPAC compound can be found in the attached file for a better understanding. The branched groups are circled.
Hello!
To find the amount of energy need to raise the temperature of 125 grams of water from 25.0° C to 35.0° C, we will need to use the formula: q = mcΔt.
In this formula, q is the heat absorbed, m is the mass, c is the specific heat, and Δt is the change in temperature, which is found by final temperature minus the initial temperature.
Firstly, we can find the change in temperature. We are given the initial temperature, which is 25.0° C and the final temperature, which is 35.0° C. It is found by subtract the final temperature from the initial temperature.
35.0° C - 25.0° C = 10.0° C
We are also given the specific heat and the grams of water. With that, we can substitute the given values into the equation and multiply.
q = 125 g × 4.184 J/g °C × 10.0° C
q = 523 J/°C × 10.0° C
q = 5230 J
Therefore, it will take 5230 joules (J) to raise the temperature of the water.
This is a missing part of your question:
The equilibrium system between sulfur dioxide gas, oxygen gas, and sulfur trioxide gas is given.
So you need the equilibrium balanced equation of SO2, O2, SO3 reaction:
First, we will start with the original equation which is not balanced yet (to understand how we get it):
SO2 + O2 ↔ SO3
Here the number of O atom is not equal at the to sides
So we will start to balance our equation by make the number of O atom equal each other on both sides:
So we will start to put 2SO3 instead of SO3
and put 2SO2 instead of SO2 to balance also the S atom on both sides
So we will get this:
2SO2(g) + O2(g) ↔ 2SO3(g) (This is our equilibrium balanced equation)
know we have a number of O atom equals on each side = 6
and the sulfur equals on each side = 2