This follows the law of conservation of momentum. Momentum is the product of mass and velocity of object.
Momentum = mass(m) x velocity(v)
law of conservation of momentum means that the total momentum of system before the collision of 2 objects is equal to the total momentum after the collision
Before the collision total momentum
= m1v1 + m2v2
m1 = 2 kg
v1 = 2 m/s
m2 = 6 kg
v2 = 0 m/s
substituting the values in the equation
total momentum before = (2 kg x 2 m/s) + (6 kg x 0 m/s)
total momentum = 4 kgm/s
after the collision the 2 objects stick together and have a common velocity
total momentum after the collision = (6 kg + 2 kg)x V = 8V
V = speed of the conglomerate particle
since total momentum before is equal to total momentum after
8V = 4
V = 2 m/s
speed of conglomerate particle is 2 m/s
B the atmosphere
D. gasoline
C. a carbonated soft drink (without bubbles)
This equation C5H + O2 ---> CO2 + H2O has a mistake.
C5H is wrong. You missed the subscript of H.
I will do it for you assuming some subscript to show you the procedure, but you have to use the right equation to get the right balanced equation.
Assuming the tha combustion equation is C5H12 + O2 ---> CO2 + H2O
First you need to balance C, so you put a 5 before CO2 and get
C5H12 + O2 ---> 5CO2 + H2O
Now you count the hydrogens: 12 on the left and 2 on the right. So put a 6 before H2O and get:
C5H12 + O2 ---> 5CO2 + 6H2O
Now count the oxygens: 2 on the left and 16 on the right, so put an 8 on before O2:
=> C5H12 + 8O2 ---> 5CO2 + 6H2O.
You can verify that the equation is balanced
The answer is 2H2 + O2----> 2H2O
Carbon Dioxide is formed when two oxygen atoms chemically combine with a carbon atom. The term that will best describe carbon dioxide is a compound. That will make the correct answer D.