Explanation:
Because they share a similar composition, similar chemicals affect their structures in positive or negative ways. For example, fluoride – a staple in many dental practices – strengthens both enamel and eggshells and helps protect them from acids. Acids weaken and break down both substances. Scientists find this particularly concerning given that the ocean is growing increasingly acidic. They fear this may weaken the eggs of some marine species and harm their chance of survival. Most dentists recommend limiting aggressively acidic foods and beverages such as soft drinks.
Enthalpy is a thermodynamic quantity that describes the heat content of a system, that can not be measured directly. That's why we measure change in enthaply, measured in the units joules. The statement that e<span>nthalpy change depends on the rate at which a substance is heated or cooled is false. Enthalpy change depends only on the following factors:
-</span><span>physical state of reactants and products
- quantity of reactants</span><span>
- allotropic modifications
- temperature and pressure</span><span>
</span>
(E) ionic aluminum fluoride (AlF3)
Answer:
Q = 1379.4 J
Explanation:
Given data:
Mass of water = 22 g
Initial temperature = 18°C
Final temperature = 33°C
Heat absorbed = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Specific heat capacity of water is 4.18 J/g.
°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 33°C - 18 °C
ΔT = 15°C
Q = 522 g ×4.18 J/g.°C× 15°C
Q = 1379.4 J