Answer:
hiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Explanation:
Answer : The value of
for
is
.
Solution : Given,
Solubility of
in water = 
The barium carbonate is insoluble in water, that means when we are adding water then the result is the formation of an equilibrium reaction between the dissolved ions and undissolved solid.
The equilibrium equation is,

Initially - 0 0
At equilibrium - s s
The Solubility product will be equal to,
![K_{sp}=[Ba^{2+}][CO^{2-}_3]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BBa%5E%7B2%2B%7D%5D%5BCO%5E%7B2-%7D_3%5D)

![[Ba^{2+}]=[CO^{2-}_3]=s=4.4\times 10^{-5}mole/L](https://tex.z-dn.net/?f=%5BBa%5E%7B2%2B%7D%5D%3D%5BCO%5E%7B2-%7D_3%5D%3Ds%3D4.4%5Ctimes%2010%5E%7B-5%7Dmole%2FL)
Now put all the given values in this expression, we get the value of solubility constant.

Therefore, the value of
for
is
.
Mitosis is where the cell divides its previously-copied DNA and cytoplasm to make two new, identical daughter cells.
The blue color of copper (ii) sulfate will change to green, yellow, orange ,red and then a dark red or brown.
Glucose is a reducing sugar; reducing sugars are sugar that forms an aldehyde or ketone in the presence of an alkaline solution. Reducing sugars reduce the blue copper sulfate from the Benedict's solution to a red brown copper sulfide; which is seen as the precipitate and is responsible for the color change.
The major species in solution when solid ammonium bromate is dissolved in water is shown below