Answer:
Maximum Tension=224N
Minimum tension= 64N
Explanation:
Given
mass =8 kg
constant speed = 6m/s .
g=10m/s^2
Maximum Tension= [(mv^2/ r) + (mg)]
Minimum tension= [(mv^2/ r) - (mg)]
Then substitute the values,
Maximum Tension= [8 × 6^2)/2 +(8×9.8)] = 224N
Minimum tension= [8 × 6^2)/2 -(8×9.8)]
=64N
Hence, Minimum tension and maximum Tension are =64N and 2224N respectively
Answer:
the volume decreases at the rate of 500cm³ in 1 min
Explanation:
given
v = 1000cm³, p = 80kPa, Δp/t= 40kPa/min
PV=C
vΔp + pΔv = 0
differentiate with respect to time
v(Δp/t) + p(Δv/t) = 0
(1000cm³)(40kPa/min) + 80kPa(Δv/t) = 0
40000 + 80kPa(Δv/t) = 0
Δv/t = -40000/80
= -500cm³/min
the volume decreases at the rate of 500cm³ in 1 min
Answer:
= 2.83
Explanation:
F number (N) is given by the formula;
F- number = f/D
where f = focal length of lens and D = diameter of the aperture
Therefore;
F number = 17 cm/6 cm
<u> = 2.83</u>
Answer:
Spring constant, k = 0.3 N/m
Explanation:
It is given that,
Force acting on DNA molecule,
The molecule got stretched by 5 nm,
Let k is the spring constant of that DNA molecule. It can be calculated using the Hooke's law. It says that the force acting on the spring is directly proportional to the distance as :
k = 0.3 N/m
So, the spring constant of the DNA molecule is 0.3 N/m. Hence, this is the required solution.
1) By looking at the table of the visible spectrum, we see that blue light has a wavelength in the range [450-490 nm], while red light has wavelength in the range [620-750 nm]. Therefore, red light has longer wavelength than blue light.
2) The frequency f of an electromagnetic wave is related to its wavelength
by the formula
where c is the speed of light. We see that the frequency is inversely proportional to the wavelength, so the shorter the wavelength, the greater the frequency. In this case, blue light has shorter wavelength than red light, so blue light has greater frequency than red light.
3) The energy of the photons of an electromagnetic wave is given by
where h is the Planck constant and f is the frequency. We see that the energy is directly proportional to the frequency, so the greater the frequency, the greater the energy. In this problem, blue light has greater frequency than red light, so blue light has also greater energy than red light.