Less because the ramp is letting off force but i does depend on the way you are going on the ramp
Answer:
<em>The period of the motion will still be equal to T.</em>
<em></em>
Explanation:
for a system with mass = M
attached to a massless spring.
If the system is set in motion with an amplitude (distance from equilibrium position) A
and has period T
The equation for the period T is given as

where k is the spring constant
If the amplitude is doubled, the distance from equilibrium position to the displacement is doubled.
Increasing the amplitude also increases the restoring force. An increase in the restoring force means the mass is now accelerated to cover more distance in the same period, so the restoring force cancels the effect of the increase in amplitude. Hence, <em>increasing the amplitude has no effect on the period of the mass and spring system.</em>
Answer:
Explanation:
Since the roundabout is rotating with uniform velocity ,
input power = frictional power
frictional power = 2.5 kW
frictional torque x angular velocity = 2.5 kW
frictional torque x .47 = 2.5 kW
frictional torque = 2.5 / .47 kN .m
= 5.32 kN . m
= 5 kN.m
b )
When power is switched off , it will decelerate because of frictional torque .
Answer:
2653 turns
Explanation:
We are given that
Diameter,d=2 cm
Length of magnet,l=8 cm=
1m=100 cm
Magnetic field,B=0.1 T
Current,I=2.4 A
We are given that
Magnetic field of solenoid and magnetic are same and size of both solenoid and magnetic are also same.
Length of solenoid=
Magnetic field of solenoid

Using the formula

Where 
