<span>The mass of an object is measured in either grams or kilograms. Mass is best described as the amount of matter, or "stuff," in a solid, and is different from weight (which is the force of gravity on an object). Since mass is used with solids, it will be measured in grams or kilograms (rather than in something like liters, which would be used with the volume of a liquid). To measure mass, you can use a balance, for example a triple balance beam.</span>
Answer : The correct answer for change in freezing point = 1.69 ° C
Freezing point depression :
It is defined as depression in freezing point of solvent when volatile or non volatile solute is added .
SO when any solute is added freezing point of solution is less than freezing point of pure solvent . This depression in freezing point is directly proportional to molal concentration of solute .
It can be expressed as :
ΔTf = Freezing point of pure solvent - freezing point of solution = i* kf * m
Where : ΔTf = change in freezing point (°C)
i = Von't Hoff factor
kf =molal freezing point depression constant of solvent.
m = molality of solute (m or
)
Given : kf = 1.86 
m = 0.907
)
Von't Hoff factor for non volatile solute is always = 1 .Since the sugar is non volatile solute , so i = 1
Plugging value in expression :
ΔTf = 1* 1.86
* 0.907
)
ΔTf = 1.69 ° C
Hence change in freezing point = 1.69 °C
Answer:
4 × 10-2
(scientific notation)
= 4e-2
(scientific e notation)
= 40 × 10-3
(engineering notation)
(thousandth; prefix milli- (m))
Explanation:
All of the anwsers
Answer:
0.600 g/cm³
Explanation:
Step 1: Given data
- Height of the cylinder (h): 6.62 cm
- Diameter of the cylinder (d): 2.34 cm
- Mass of the cylinder (m): 17.1 g
Step 2: Calculate the volume of the cylinder
First, we have to determine the radius, which is half of the diameter.
r = d/2 = 2.34 cm/2 = 1.17 cm
Then, we use the formula for the volume of the cylinder.
V= π × r² × h
V= π × (1.17 cm)² × 6.62 cm
V = 28.5 cm³
Step 3: Calculate the density (ρ) of the sample
The density is equal to the mass divided by the volume.
ρ = m/V
ρ = 17.1 g/28.5 cm³
ρ = 0.600 g/cm³
The diatomic molecule with a triple covalent bond is N2.
Nitrogen has five atoms in its valence shell. In order for it to attain the octet structure, that is, to have eight electrons in its outermost shell, it has to donate three electrons, just like the other element it is reacting with in order to form a triple covalent bond.