3NaOH + FeCl3 → 3NaCl + Fe(OH)3
Answer:
31.831 Hz.
Explanation:
<u>Given:</u>
The vertical displacement of a wave is given in generalized form as

<em>where</em>,
- A = amplitude of the displacement of the wave.
- k = wave number of the wave =

= wavelength of the wave.- x = horizontal displacement of the wave.
= angular frequency of the wave =
.- f = frequency of the wave.
- t = time at which the displacement is calculated.
On comparing the generalized equation with the given equation of the displacement of the wave, we get,

therefore,

It is the required frequency of the wave.
Answer:
The appropriate response is "
". A further explanation is described below.
Explanation:
The torque (
) produced by the force on the dam will be:
⇒ 
On applying integration both sides, we get
⇒ 
⇒ 
⇒ ![=pgL[\frac{h^3}{2} -\frac{h^3}{3} ]](https://tex.z-dn.net/?f=%3DpgL%5B%5Cfrac%7Bh%5E3%7D%7B2%7D%20-%5Cfrac%7Bh%5E3%7D%7B3%7D%20%5D)
⇒ 
Answer:
The fundamental frequency of can is 2.7 kHz.
Explanation:
Given that,
A typical length for the auditory canal in an adult is about 3.1 cm, l = 3.1 cm
The speed of sound is, v = 336 m/s
We need to find the fundamental frequency of the canal. For a tube open at only one end, the fundamental frequency is given by :

So, the fundamental frequency of can is 2.7 kHz. Hence, this is the required solution.
Explanation:
The magnitude of a vector v can be found using Pythagorean's theorem.
||v|| = √(vₓ² + vᵧ²)
||v|| = √((-309)² + (187)²)
||v|| ≈ 361
You can find the angle of a vector using trigonometry.
tan θ = vᵧ / vₓ
tan θ = 187 / -309
θ ≈ 149° or θ ≈ 329°
vₓ is negative and vᵧ is positive, so θ must be in the second quadrant. Therefore, θ ≈ 149°.