Answer:
\frac{dh}{dt}_{h=2cm} =\frac{40}{9\pi}\frac{cm}{2}
Explanation:
Hello,
The suitable differential equation for this case is:

As we're looking for the change in height with respect to the time, we need a relationship to achieve such as:

Of course,
.
Now, since the volume of a cone is
and the ratio
or
, the volume becomes:

We proceed to its differentiation:

Then, we compute 

Finally, at h=2:

Best regards.
Quantitative data is numerical.
Qualitative data is non-numerical.
Hope this helps.
have a great day.
Answer:
I don't know 100% but im pretty sure its electrons, if im wrong im really sorry let me know in the comments ill change it
explanation
the nucleus has more weight but its more compact but the electrons are spread apart circling the nucleus and therefor take up more space
Answer:
Ionosphere.
Explanation:
The atmospheric layer that is represented by F is known as IONOSPHERE.
The characteristics of Ionosphere
1. It is considered to be located in the upper layer of the earth's atmosphere due to the location of region F.
2. It is ionized by solar radiation that contains an electrical charge.
3. It functions as a reflector. This can be observed in radio waves broadcasting.
According to Law of conservation of matter," matter can neither be created nor destroyed but is conserved and remains constant over time'.
In above picture let suppose the Blue balls represent N₂ molecule and White balls represent H₂ molecules.
So, left picture represent reactants,
2 N₂ + 6 H₂
And , right picture represent products,
4 NH₃
So, there are 4 N atoms and 12 Hydrogen atoms in reactants and 4 N atom and 12 Hydrogen atoms in products. Means the mass of elements is conserved. The overall reactions is as follow,
2 N₂ + 6 H₂ → 4 NH₃
Result:
Yes! This reaction follow Law of conservation of Matter.