Answer:
Mass of Na₂CrO₄ = 5.75 g
Explanation:
First of all we will write the balance chemical equation.
2AgNO₃ + Na₂CrO₄ → Ag₂CrO₄ + 2NaNO₃
Now we will calculate the moles of AgNO₃.
Number of moles = mass / molar mass
Molar mass of AgNO₃ = 107.87 + 14 + 3× 16 = 169.87 g/mol
Number of moles = mass / molar mass
Number of moles = 12.1 g / 169.87 g/mol = 0.071 mol
Now we will compare the moles of AgNO₃ and Na₂CrO₄ from balance chemical equation.
AgNO₃ : Na₂CrO₄
2 : 1
0.071 : 1/2× 0.071 = 0.0355
Now we will calculate the mass of Na₂CrO₄.
Molar mass of Na₂CrO₄ = 23×2 + 52 + 16×4 = 162 g/mol
Mass of Na₂CrO₄ = number of moles × molar mass
Mass of Na₂CrO₄ = 0.0355 mol × 162 g/mol
Mass of Na₂CrO₄ = 5.75 g
Answer:
Chlorine has 17 total electrons with electron configuration 1s^2 2s^2 2p^6 3s^2 3p^5.
What are the first two quantum numbers for the six electrons in the 2p subshell?
Explanation:
The principal quantum number represents the shell number in which the electron is present.
It is represented with "n".
The next quantum number is the azimuthal quantum number.
It represents the shape of the orbital.
It has values from 0 to (n-1).
Its value depends on the principal quantum number.
Chlorine has 17 total electrons with electron configuration 1s^2 2s^2 2p^6 3s^2 3p^5.
For the six elecetrons in 2p subshell:
The first two quantum number values are the same and their values are:
n=2 , l=1.
Answer:
Dipole, less electronegativity, higher electronegativity
Answer:
The answer would be work with.
Explanation:
Because, if we know what the word interact means then we can look for a word similar to interact. hope this makes sense <3.
Hello!
The formula is density = mass / volume
=> volume = mass / density
volume = ?
mass = 2500.0 g
density = 10.5 g/cm3
volume = mass / density
volume = 2500.0 g / 10.5 g/cm3
volume = 2380.95 cm3
Hope this help!