1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jeyben [28]
3 years ago
9

Raindrops fall vertically at 7.5 m/s relative to the Earth. What does an observer in a car moving at 20.2 m/s in a straight line

measure as the velocity of the raindrops? (Assume the car is moving to the right and that the +x-axis is to the right. Enter the magnitude in m/s and the direction in degrees counterclockwise from the +x-axis.)
Physics
1 answer:
Vilka [71]3 years ago
4 0

Answer:

vDP = 21.7454 m/s

θ = 200.3693°

Explanation:

Given

vDE = 7.5 m/s

vPE = 20.2 m/s

Required:  vDP

Assume that

vDE to be in direction of - j

vPE to be in direction of i

According to relative motion concept the velocity vDP is given by

vDP = vDE - vPE     (I)

Substitute in (I) to get that

vDP = - 7.5 j - 20.2 i

The magnitude of vDP is given by

vDP = √((- 7.5)²+(- 20.2)²) m/s =  21.7454 m/s

θ = Arctan (- 7.5/- 20.2) = 20.3693°

θ is in 3rd quadrant so add 180°

θ = 20.3693° + 180° = 200.3693°

You might be interested in
To model this process, assume two charged spherical conductors are connected by a long conducting wire and a 1.20-mC charge is p
il63 [147K]

Answer:

Part a: The electric potential of each sphere is 1.35x10⁸V

Part b: The electric field at the surface of sphere 1 and 2 is 2.25x10⁹ N/C and 6.75x10⁹ N/C respectively

Explanation:

As the complete question is not given, the similar question is attached herewith. The values are used as indicated in the given question

Let r_1 = 6 cm=0.06 m

r2 = 2 cm = 0.02 m

Q = 1.2 mC

Let q1 and q2 are the charges on each sphere.

q1 + q2 = 1.2 mC -------(1)

In the equilibrium, V1 = V2

k*q1/r1 = k*q2/r2

q1/0.06 = q2/0.02

q1/q2 = 0.06/0.02

q1/q2 = 3 ---------(2)

On solving equation 1 and 2

we get

q1 = 0.9 mC

q2 = 0.3 mC

So

V1 = k*q1/r1 = (9*10^9*0.9*10^-3)/0.06 = 1.35*10^8 Volts

V2 = k*q2/r2 = 9*10^9*0.3*10^-3/0.02 = 1.35*10^8 Volts

So the electric potential of each sphere is 1.35x10⁸V

Part b

Now the electric potential is given as

E1 = k*q1/r1^2 = 9*10^9*0.9*10^-3/0.06^2 = 2.25*10^9 N/C

E2 = k*q2/r2 = 9*10^9*0.3*10^-3/0.02^2 = 6.75*10^9 N/C

So the electric field at the surface of sphere 1 and 2 is 2.25x10⁹ N/C and 6.75x10⁹ N/C respectively

7 0
3 years ago
Steve and Carl are driving from Scranton to Bridgeport a distance of 180 miles if they're speed averages 60 miles an hour how lo
Anarel [89]
It will take at least 3 hours for them to get to Bridgeport
7 0
3 years ago
A student walks 4 block east, 7 blocks west, 1 blocks east then 2 blocks west in an hour. Her average speed is____ block/hour
Gemiola [76]

Average speed = (total distance) / (total time)

Average speed = (4+7+1+2 blox) / (1 hour)

<em>Average speed = 14 blocks/hour</em>

<em></em>

I'm gonna go out on a limb here and take a wild guess:

I'm guessing that there's another question glued onto the end of this one, and it asks you to find either her displacement or her average velocity.  I'm so sure of this that I'm gonna give you the solution for that too.  If there's no more question, then you won't need this, and you can just discard it.  I won't mind.

Average velocity = (displacement) / (time for the displacement)

"Displacement" = distance and direction from the start point to the end point, regardless of how she got there.

Displacement = (4E + 7W + 1E + 2W)

Displacement = (5E + 9W)

<em>Displacement = 4 blocks west</em>

Average velocity = (4 blocks west) / (1 hour)

<em>Average velocity = 4 blocks/hour  West</em>

4 0
2 years ago
A 0.547 kg pizza is thrown straight up in the air. At a height of 2.30 m above the surface of the earth it has a speed of 5.00 m
natima [27]

Answer:

The total mechanical energy of the pizza crust is 19.2 J.

Explanation:

Mechanical energy is that which a body or a system obtains as a result of the speed of its movement or its specific position, and which is capable of producing mechanical work. Then:

Potential energy + kinetic energy = total mechanical energy

Kinetic energy is a form of energy. It is defined as the energy associated with bodies that are in motion and this energy depends on the mass and speed of the body.

Kinetic energy is defined as the amount of work necessary to accelerate a body of a certain mass and in a position of rest, until it reaches a certain speed.

Kinetic energy is represented by the following formula:

Ec = ½ *m*v²

Where Ec is kinetic energy, which is measured in Joules (J), m is mass measured in kilograms (kg), and v is velocity measured in meters over seconds (m / s).

In this case:

  • m=0.547 kg
  • v= 5 m/s

Replacing:

Ec = ½ *0.547 kg*(5 m/s)²

and solving you get:

Ec= 6.8375 J

On the other hand, potential energy is the energy that measures the ability of a system to perform work based on its position. In other words, this is the energy that a body has at a certain height above the ground.

Gravitational potential energy is the energy associated with the gravitational force. This will depend on the relative height of an object to some reference point, the mass, and the force of gravity. Then for an object with mass m, at height h, the expression applied to the gravitational energy of the object is:

Ep = m*g*h

Where Ep is the potential energy in joules (J), m is the mass in kilograms (kg) is h the height in meters (m) and g is the acceleration of fall in m / s² (approximately 9.81 m/s²)

In this case:

  • m= 0.547 kg
  • g= 9.81 m/s²
  • h= 2.30 m

Replacing

Ep= 0.547 kg *9.81 m/s²* 2.30 m

and solving you get:

Ep= 12.342 J

So:

Total mechanical energy= 12.342 J + 6.8375 J

Total mechanical energy= 19.1795 J≅ 19.2 J

<u><em>The total mechanical energy of the pizza crust is 19.2 J.</em></u>

6 0
3 years ago
n outer space, a constant net force with a magnitude of 140 N is exerted on a 32.5 kg probe initially at rest. A) What accelerat
musickatia [10]

Answer:

a) 4.31 m/s²

b) 215.5 m

Explanation:

a) According to Newton's first law of motion

The net force applied to particular mass produced acceleration, a, according to

F = ma

F = 140 N

m = 32.5 kg

a = ?

140 = 32.5 × a

a = 140/32.5 = 4.31 m/s²

b) Using the equations of motion, we can obtain the distance travelled by the object in t = 10 s

u = initial velocity of the probe = 0 m/s (since it was initially at rest)

a = 4.31 m/s²

t = 10 s

s = distance travelled = ?

s = ut + at²/2

s = 0 + (4.31×10²)/2 = 215.5 m

7 0
3 years ago
Other questions:
  • How is power defined
    5·2 answers
  • A physics student notices that the current in a coil of conducting wire goes from i1 = 0.200 A to i2 = 1.50 A in a time interval
    15·1 answer
  • The slope of the graph
    5·1 answer
  • Which of the following is an example of potential energy?
    11·1 answer
  • 1. what kinds of things do scientists in each area study?<br>2. how do scientists answer questions?​
    12·1 answer
  • Plz help to answer the sheet above thanks
    12·1 answer
  • Two pounds of water vapor at 30 psia fill the 4-ft3 left chamber of a partitioned system. The right chamber has twice the volume
    12·1 answer
  • What is the answer, friends?
    5·1 answer
  • When applied behavior analysis is used properly what happens???​
    11·1 answer
  • What is the maximum velocity at which a 60-watt motor can lift an 8.5-kg mass upward?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!